Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuroimmune Pharmacol ; 18(3): 529-550, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37698780

RESUMO

Sirtuin 2 (SIRT2) has been proposed to have a central role on aging, inflammation, cancer and neurodegenerative diseases; however, its specific function remains controversial. Recent studies propose SIRT2 pharmacological inhibition as a therapeutic strategy for several neurodegenerative diseases including Alzheimer's disease (AD). Surprisingly, none of these published studies regarding the potential interest of SIRT2 inhibition has assessed the peripheral adverse side consequences of this treatment. In this study, we demonstrate that the specific SIRT2 inhibitor, the compound 33i, does not exhibit genotoxic or mutagenic properties. Moreover, pharmacological treatment with 33i, improved cognitive dysfunction and long-term potentiation, reducing amyloid pathology and neuroinflammation in the APP/PS1 AD mouse model. However, this treatment increased peripheral levels of the inflammatory cytokines IL-1ß, TNF, IL-6 and MCP-1. Accordingly, peripheral SIRT2 inhibition with the blood brain barrier impermeable compound AGK-2, worsened the cognitive capacities and increased systemic inflammation. The analysis of human samples revealed that SIRT2 is increased in the brain but not in the serum of AD patients. These results suggest that, although SIRT2 pharmacological inhibition may have beneficial consequences in neurodegenerative diseases, its pharmacological inhibition at the periphery would not be recommended and the systemic adverse side effects should be considered. This information is essential to maximize the therapeutic potential of SIRT2 inhibition not only for AD but also for other neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Sirtuína 2 , Animais , Humanos , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Inflamação/induzido quimicamente , Inflamação/patologia , Camundongos Transgênicos , Sirtuína 2/antagonistas & inibidores , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/patologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-36209771

RESUMO

The NMDA antagonist ketamine demonstrated a fast antidepressant activity in treatment-resistant depression. Pre-clinical studies suggest that de novo synthesis of the brain-derived neurotrophic factor (BDNF) in the PFC might be involved in the rapid antidepressant action of ketamine. Applying a genetic model of impaired glutamate release, this study aims to further identify the molecular mechanisms that could modulate antidepressant action and resistance to treatment. To that end, mice knocked-down for the vesicular glutamate transporter 1 (VGLUT1+/-) were used. We analyzed anhedonia and helpless behavior as well as the expression of the proteins linked to glutamate transmission in the PFC of mice treated with ketamine or the reference antidepressant reboxetine. Moreover, we analyzed the acute effects of ketamine in VGLUT1+/- mice pretreated with chronic reboxetine or those that received a PFC rescue expression of VGLUT1. Chronic reboxetine rescued the depressive-like phenotype of the VGLUT1+/- mice. In addition, it enhanced the expression of the proteins linked to the AMPA signaling pathway as well as the immature form of BDNF (pro-BDNF). Unlike WT mice, ketamine had no effect on anhedonia or pro-BDNF expression in VGLUT1+/- mice; it also failed to decrease phosphorylated eukaryote elongation factor 2 (p-eEF2). Nevertheless, we found that reboxetine administered as pretreatment or PFC overexpression of VGLUT1 did rescue the antidepressant-like activity of acute ketamine in the mice. Our results strongly suggest that not only do PFC VGLUT1 levels modulate the rapid-antidepressant action of ketamine, but also highlight a possible mechanism for antidepressant resistance in some patients.


Assuntos
Ketamina , Proteína Vesicular 1 de Transporte de Glutamato , Animais , Camundongos , Anedonia , Antidepressivos/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/metabolismo , Modelos Animais de Doenças , Ácido Glutâmico/metabolismo , Ketamina/farmacologia , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Reboxetina/farmacologia , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-33974124

RESUMO

Histone deacetylases (HDACs) are a family of 18 members that participate in the epigenetic regulation of gene expression. In addition to histones, some HDACs also deacetylate transcription factors and specific cytoplasmic proteins.Monocytes, as part of the innate immune system, maintain tissue homeostasis and help fight infections and cancer. In these cells, HDACs are involved in multiple processes including proliferation, migration, differentiation, inflammatory response, infections, and tumorigenesis. Here, a systematic description of the role that most HDACs play in these functions is reviewed. Specifically, some HDACs induce a pro-inflammatory response and play major roles in host defense. Conversely, other HDACs reprogram monocytes and macrophages towards an immunosuppressive phenotype. The right balance between both types helps monocytes to respond correctly to the different physiological/pathological stimuli. However, aberrant expressions or activities of specific HDACs are associated with autoimmune diseases along with other chronic inflammatory diseases, infections, or cancer.This paper critically reviews the interesting and extensive knowledge regarding the role of some HDACs in these pathologies. It also shows that as yet, very little progress has been made toward the goal of finding effective HDAC-targeted therapies. However, given their obvious potential, we conclude that it is worth the effort to develop monocyte-specific drugs that selectively target HDAC subtypes with the aim of finding effective treatments for diseases in which our innate immune system is involved.


Assuntos
Histona Desacetilases , Monócitos , Epigênese Genética , Inibidores de Histona Desacetilases , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histonas/metabolismo , Monócitos/metabolismo
4.
Int J Mol Sci ; 22(6)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803627

RESUMO

Sirtuin 2 (SIRT2) has been associated to aging and age-related pathologies. Specifically, an age-dependent accumulation of isoform 3 of SIRT2 in the CNS has been demonstrated; however, no study has addressed the behavioral or molecular consequences that this could have on aging. In the present study, we have designed an adeno-associated virus vector (AAV-CAG-Sirt2.3-eGFP) for the overexpression of SIRT2.3 in the hippocampus of 2 month-old SAMR1 and SAMP8 mice. Our results show that the specific overexpression of this isoform does not induce significant behavioral or molecular effects at short or long term in the control strain. Only a tendency towards a worsening in the performance in acquisition phase of the Morris Water Maze was found in SAMP8 mice, together with a significant increase in the pro-inflammatory cytokine Il-1ß. These results suggest that the age-related increase of SIRT2.3 found in the brain is not responsible for induction or prevention of senescence. Nevertheless, in combination with other risk factors, it could contribute to the progression of age-related processes. Understanding the specific role of SIRT2 on aging and the underlying molecular mechanisms is essential to design new and more successful therapies for the treatment of age-related diseases.


Assuntos
Envelhecimento/metabolismo , Sirtuína 2/metabolismo , Animais , Astrócitos/metabolismo , Comportamento Animal , Regulação da Expressão Gênica no Desenvolvimento , Hipocampo/metabolismo , Hipocampo/patologia , Inflamação/patologia , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Doenças Neurodegenerativas/metabolismo , Sirtuína 2/genética
5.
Eur Neuropsychopharmacol ; 44: 51-65, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33451856

RESUMO

Circadian rhythms disturbance is widely observable in patients with major depression (MD) and is also associated with depression vulnerability. Of them, disturbed melatonin secretion rhythm is particularly relevant to MD and is strongly phase-locked to core body temperature (CBT) rhythm. Here we aim to study the specific role of each melatonin receptor (MT1 and MT2) subtype in melatonin regulation of circadian CBT and its possible relationship with depressive-like behaviors. MT1-/- , MT2-/- and WT (C57BL/6) mice were used.  Anhedonia, using the sucrose intake test, circadian CBT, environmental place preference (EPP) conditioning and vulnerability to chronic social defeat stress (CSDS) procedure were studied. Moreover, the antidepressant effects of reboxetine (15 mg/kg/day, i.p.) for three weeks or ketamine (15 mg/kg i.p. every four days, 4 doses in total) were studied. Further, exposure to ultra-mild stress induced by individual housing for several weeks was also studied in these mice. MT2-/- mice showed anhedonia and lower CBT compared to WT and MT1-/-. In addition, while reward exposure raised nocturnal CBT in WT this increase did not take place in MT2-/- mice. Further, MT2-/- mice showed an enhanced vulnerability to stress-induced anhedonia and social avoidance as well as an impaired acquisition of novelty seeking behavior. Both reboxetine and ketamine reverted anhedonia and induced a clear anti-helpless behavior in the tail suspension test (TST). Reboxetine raised CBT in mice and reverted ultra-mild stress-induced anhedonia. Our findings show a primary role for MT2 receptors in the regulation of circadian CBT as well as anhedonia and suggest that these receptors could be involved in depressive disorders associated to disturbed melatonin function.


Assuntos
Transtorno Depressivo Maior , Ketamina , Melatonina , Anedonia , Animais , Ritmo Circadiano , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Reboxetina , Receptor MT1 de Melatonina , Receptor MT2 de Melatonina , Temperatura
6.
Neuropsychopharmacology ; 45(2): 347-357, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31471557

RESUMO

The senescence-accelerated mouse prone-8 (SAMP8) model has been considered as a good model for aged-related cognitive decline and Alzheimer's disease (AD). Since epigenetic alterations represent a crucial mechanism during aging, in the present study we tested whether the inhibition of the histone deacetylase sirtuin 2 (SIRT2) could ameliorate the age-dependent cognitive impairments and associated neuropathology shown by SAMP8 mice. To this end, the potent SIRT2-selective inhibitor, 33i (5 mg/kg i.p. 8 weeks) was administered to 5-month-old (early treatment) and 8-month-old (late treatment) SAMP8 and aged matched control, senescence-accelerated mouse resistant-1 (SAMR1) mice. 33i administration to 5-month-old SAMP8 mice improved spatial learning and memory impairments shown by this strain in the Morris water maze. SAMP8 showed hyperphosphorylation of tau protein and decrease levels of SIRT1 in the hippocampus, which were not altered by 33i treatment. However, this treatment upregulated the glutamate receptor subunits GluN2A, GluN2B, and GluA1 in both SAMR1 and SAMP8. Moreover, early SIRT2 inhibition prevented neuroinflammation evidenced by reduced levels of GFAP, IL-1ß, Il-6, and Tnf-α, providing a plausible explanation for the improvement of cognitive deficits shown by 33i-treated SAMP8 mice. When 33i was administered to 8-month-old SAMP8 with a severe established pathology, increases in GluN2A, GluN2B, and GluA1 were observed; however, it was not able to reverse the cognitive decline or the neuroinflammation. These results suggest that early SIRT2 inhibition might be beneficial in preventing age-related cognitive deficits, neuroinflammation, and AD progression and could be an emerging candidate for the treatment of other diseases linked to dementia.


Assuntos
Envelhecimento/metabolismo , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Sirtuína 2/antagonistas & inibidores , Sirtuína 2/metabolismo , Envelhecimento/genética , Animais , Disfunção Cognitiva/genética , Masculino , Camundongos , Camundongos Transgênicos , Receptores de N-Metil-D-Aspartato/metabolismo , Sirtuína 2/genética
7.
Behav Brain Res ; 356: 435-443, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29885846

RESUMO

The psychopathology of depression is highly complex and the outcome of studies on animal models is divergent. In order to find brain regions that could be metabolically distinctively active across a variety of mouse depression models and to compare the interconnectivity of brain regions of wild-type and such genetically modified mice, histochemical mapping of oxidative metabolism was performed by the measurement of cytochrome oxidase activity. We included mice with the heterozygous knockout of the vesicular glutamate transporter (VGLUT1-/+), full knockout of the cannabinoid 1 receptor (CB1-/-), an anti-sense knockdown of the glucocorticoid receptor (GRi) and overexpression of the human 5-hydroxytryptamine transporter (h5-HTT). Altogether 76 mouse brains were studied to measure oxidative metabolism in one hundred brain regions, and the obtained dataset was submitted to a variety of machine learning algorithms and multidimensional scaling. Overall, the top brain regions having the largest contribution to classification into depression model were the lateroanterior hypothalamic nucleus, the anterior part of the basomedial amygdaloid nucleus, claustrum, the suprachiasmatic nucleus, the ventromedial hypothalamic nucleus, and the anterior hypothalamic area. In terms of the patterns of inter-regional relationship between wild-type and genetically modified mice there was little overall difference, while the most deviating brain regions were cortical amygdala and ventrolateral and ventral posteromedial thalamic nuclei. The GRi mice that most clearly differed from their controls exhibited deviation of connectivity for a number of brain regions, such as ventrolateral thalamic nucleus, the intermediate part of the lateral septal nucleus, the anteriodorsal part of the medial amygdaloid nucleus, the medial division of the central amygdaloid nucleus, ventral pallidum, nucleus of the vertical limb of the diagonal band, anteroventral parts of the thalamic nucleus and parts of the bed nucleus of the stria terminalis. Conclusively, the GRi mouse model was characterized by changes in the functional connectivity of the extended amygdala and stress response circuits.


Assuntos
Transtornos de Ansiedade/fisiopatologia , Ansiedade/fisiopatologia , Hipotálamo/fisiopatologia , Transtornos do Humor/fisiopatologia , Tonsila do Cerebelo/fisiopatologia , Animais , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Camundongos Knockout , Vias Neurais/fisiopatologia , Estresse Oxidativo/fisiologia , Núcleos Septais/fisiopatologia
8.
Psychopharmacology (Berl) ; 235(10): 2831-2846, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30091005

RESUMO

RATIONALE: Antidepressant action has been linked to increased synaptic plasticity in which epigenetic mechanisms such as histone posttranslational acetylation could be involved. Interestingly, the histone deacetylases HDAC5 and SIRT2 are oppositely regulated by stress and antidepressants in mice prefrontal cortex (PFC). Besides, the neuroblastoma SH-SY5Y line is an in vitro neuronal model reliable to study drug effects with clear advantages over animals. OBJECTIVES: We aimed to characterize in vitro the role of HDAC5 and SIRT2 in antidepressant regulation of neuroplasticity. METHODS: SH-SY5Y cultures were incubated with imipramine, fluoxetine, and reboxetine (10 µM, 2 and 24 h) as well as the selective HDAC5 (MC3822, 5 µM, 24 h) or SIRT2 (33i, 5 µM, 24 h) inhibitors. The regulation of the brain-derived neurotrophic factor (BDNF), the vesicular glutamate transporter 1 (VGLUT1), the acetylated histones 3 (AcH3) and 4 (AcH4), HDAC5, and SIRT2 was studied. Comparatively, the long-term effects of these antidepressants (21 days, i.p.) in the mice (C57BL6, 8 weeks) PFC were studied. RESULTS: Antidepressants increased both in vitro and in vivo expression of BDNF, VGLUT1, AcH3, and AcH4. Moreover, imipramine and reboxetine increased the phosphorylated form of HDAC5 (P-HDAC5), mediating its cytoplasmic export. Further, SIRT2 was downregulated by all antidepressants. Finally, specific inhibition of HDAC5 and SIRT2 increased neuroplasticity markers. CONCLUSIONS: This study supports the validity of the SH-SY5Y model for studying epigenetic changes linked to synaptic plasticity induced by antidepressants as well as the effect of selective HDAC inhibitors. Particularly, nucleocytoplasmic export of HDAC5 and SIRT2 downregulation mediated by antidepressants could enhance synaptic plasticity markers leading to antidepressant action.


Assuntos
Antidepressivos/farmacologia , Regulação para Baixo/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Histona Desacetilases/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Sirtuína 2/metabolismo , Animais , Regulação para Baixo/fisiologia , Epigênese Genética/fisiologia , Fluoxetina/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Humanos , Imipramina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Distribuição Aleatória , Reboxetina/farmacologia
9.
Neuropharmacology ; 117: 195-208, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28185898

RESUMO

Growing evidence suggests that changes in histone acetylation in specific sites of the chromatin modulate neuronal plasticity and contribute to antidepressant-like action. Sirtuin 2 (SIRT2) is a class III NAD+-dependent histone deacetylase involved in transcriptional repression of genes regulating synaptic plasticity. Importantly, a key role for the glutamate system in prefrontal cortex (PFC) synaptic plasticity changes induced by antidepressants has been suggested. Here, we asked whether SIRT2 could be a pharmacological target for depression therapy. The compound 2-{3-(3-fluorophenethyloxy)phenylamino}benzamide (33i), a selective SIRT2 inhibitor in vitro, was studied in mice (C57Bl6). Firstly, the inhibitory effect of subchronic 33i (5-15 mg/kg, 10 days) on SIRT2 activity in the PFC was evaluated. Moreover, the effect of SIRT2 inhibition on the expression of synaptic plasticity markers linked to glutamate neurotransmission (VGLUT1, synaptophysin, mGluR4, GluA1, GluN2B, GluN2A) and on serotonin levels was studied. Further, neurochemical and behavioral effects of chronic (5 weeks) 33i (15 mg/kg) on the chronic mild stress (CMS) model were analyzed. Subchronic 33i inhibited SIRT2, increased GluN2A, GluN2B and serotonin levels in the PFC. Moreover, chronic 33i reverted CMS-induced anhedonia and social avoidance. Moreover, 33i upregulated postsynaptic GluN2B and phosphorylated form of GluA1 (p-GluA1), suggesting that SIRT2 inhibition enhance synaptic strength. Yet, CMS also increased both GluN2A and GluN2B in the postsynaptic fraction. These results suggest that Sirt2 inhibition induce antidepressant-like action and this effect could be mediated by modulation of glutamate and serotonin system in the PFC. Moreover, it highlights the therapeutic potential of SIRT2 inhibitors as new antidepressant agents.


Assuntos
Antidepressivos/farmacologia , Córtex Pré-Frontal/metabolismo , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Serotonina/metabolismo , Sirtuína 2/antagonistas & inibidores , Anedonia/efeitos dos fármacos , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Relação Dose-Resposta a Droga , Masculino , Camundongos , Plasticidade Neuronal/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Estresse Psicológico/metabolismo , Regulação para Cima/efeitos dos fármacos , ortoaminobenzoatos/farmacologia
10.
Hippocampus ; 26(10): 1303-12, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27258819

RESUMO

Alzheimer's disease (AD) is characterized phenotypically by memory impairment, histologically by accumulation of pTau and ß-amyloid peptide and morphologically by a loss of nerve terminals in cortical and hippocampal regions. As glutamate is the principle excitatory neurotransmitter of the central nervous system (CNS), the glutamatergic system may play an important role in AD. To date, not many studies have addressed the deleterious effects of Aß on glutamatergic terminals; therefore the aim of this study was to investigate how Aß affects glutamatergic terminals and to assess the extent to which alterations in the glutamatergic neurotransmission could impact susceptibility to the illness. The present study shows that Aß caused a loss of glutamatergic terminals, measured by VGLUT1 protein levels, in Tg2576 primary cell cultures, Tg2576 mice and AD patient brains, and also when Aß was added exogenously to hippocampal cell cultures. Interestingly, no correlation was found between cognition and decreased VGLUT1 levels. Moreover, when Aß1-42 was intracerebroventricularlly administered into VGLUT1+/- mice, altered synaptic plasticity and increased neuroinflammation was observed in the hippocampus of those animals. In conclusion, the present study not only revealed susceptibility of glutamatergic nerve terminals to Aß induced toxicity but also underlined the importance of VGLUT1 in the progression of AD, as the decrease of this protein levels could increase the susceptibility to subsequent deleterious inputs by exacerbating Aß induced neuroinflammation and synaptic plasticity disruption. © 2016 Wiley Periodicals, Inc.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Ácido Glutâmico/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasticidade Neuronal/fisiologia , Neurônios/patologia , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Receptores de N-Metil-D-Aspartato/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/genética
11.
Behav Brain Res ; 292: 79-82, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26051818

RESUMO

It is believed that glucocorticoids control the proliferation of neural progenitor cells, and this process is highly involved in mood disorders and cognitive processes. Using the maternal separation model of chronic neonatal stress, it has been found that stress induced depressive-like behavior, cognitive deficits and a decrease in proliferation in the subventricular zone (SVZ). Venlafaxine reversed all deleterious effects of chronic stress by modulating HPA activity. These outcomes suggest modulation of stress-mediated glucocorticoid secretion as a target for the treatment of mood disorders and neurodegenerative processes.


Assuntos
Ventrículos Laterais/efeitos dos fármacos , Ventrículos Laterais/patologia , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/patologia , Cloridrato de Venlafaxina/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transtornos Cognitivos/sangue , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/patologia , Corticosterona/sangue , Depressão/sangue , Depressão/tratamento farmacológico , Depressão/etiologia , Depressão/patologia , Masculino , Privação Materna , Distribuição Aleatória , Ratos , Receptores de Glucocorticoides/sangue , Estresse Psicológico/sangue , Estresse Psicológico/etiologia
12.
J Gerontol A Biol Sci Med Sci ; 70(6): 675-85, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25063079

RESUMO

The senescence-accelerated mouse-prone 8 (SAMP8), used as a model of aging, displays many established pathological features of Alzheimer's disease. Cognitive impairments and increased levels of hyperphosphorylated tau are found in the hippocampus of SAMP8 mice along with an increased ß-secretase activity and amyloid-ß (Aß) depositions that increase in number and extent with age. Based on a previous study from our laboratory showing an amelioration of cognitive impairments and tau pathology by sildenafil, in this study we tested whether this drug could also modulate the amyloid precursor protein amyloidogenic processing in this mouse model. Our results show that the protein levels of the ß-secretases ß-site amyloid precursor protein cleaving enzyme 1 and cathepsin B are higher in the hippocampus of 9-month-old SAMP8 mice than those of age-matched senescence-resistant-1. Sildenafil (7.5mg/kg for 4 weeks) attenuated learning and memory impairments shown by SAMP8 mice in the passive avoidance test. The increased expression of ß-site amyloid precursor protein cleaving enzyme 1 was also reduced by sildenafil, an effect paralleled to decreases in the activities of two ß-site amyloid precursor protein cleaving enzyme 1 modulators, calpain and cyclin-dependent kinase 5 protein. Interestingly, sildenafil enhanced both Akt and glycogen synthase kinase-3ß (ser9) phosphorylation, which could be mediating the reduction in cathepsin B levels found in the hippocampus of sildenafil-treated SAMP8 mice. Sildenafil-induced reduction in ß-site amyloid precursor protein cleaving enzyme 1 and cathepsin B expression in SAMP8 mice was associated with a decrease in hippocampal Aß42 levels which, in turn, could mediate the parallel decline in glial fibrillary acidic protein expression observed in these animals. These findings highlight the therapeutic potential of sildenafil in Alzheimer's disease pathogenesis.


Assuntos
Envelhecimento/efeitos dos fármacos , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Catepsina B/metabolismo , Hipocampo/metabolismo , Inibidores da Fosfodiesterase 5/farmacologia , Piperazinas/farmacologia , Sulfonamidas/farmacologia , Envelhecimento/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Animais , Ácido Aspártico Endopeptidases/genética , Calpaína/metabolismo , Transtornos Cognitivos/tratamento farmacológico , Quinase 5 Dependente de Ciclina/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Quinases da Glicogênio Sintase/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Camundongos , Modelos Animais , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Purinas/farmacologia , RNA Mensageiro/metabolismo , Citrato de Sildenafila
13.
Drugs ; 74(7): 729-36, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24802806

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia in elderly people. Research focused on identifying compounds that restore cognition and memory in AD patients is a very active investigational pursuit. Cholinesterase inhibitors for the symptomatic treatment of cognitive decline in AD have been in use for more than a decade but provide only modest benefits in most patients. Preclinical research is constantly providing new information on AD. The involvement of the serotonergic system in higher cognitive processes such as memory and learning has been widely described and extensive serotonergic denervation has been reported in AD. This review aims to explain the rationale behind testing serotonergic therapies for AD in terms of current knowledge about the pathophysiology of the disease. Based on preclinical studies, certain serotonin (5-HT) receptor ligands have been suggested to have the ability to modify or improve memory/cognition, specifically 5-HT receptors acting at 5-HT1A, 5-HT4 and 5-HT6 receptors. This article summarizes the pharmacology, efficacy, safety and tolerability data for the various serotonergic agents currently in clinical development for AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Transtornos Cognitivos/tratamento farmacológico , Agonistas do Receptor de Serotonina/uso terapêutico , Doença de Alzheimer/complicações , Transtornos Cognitivos/complicações , Humanos , Ligantes , Receptor 5-HT2A de Serotonina/metabolismo , Agonistas do Receptor de Serotonina/farmacologia
14.
Behav Brain Res ; 267: 83-94, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24662150

RESUMO

The large variety of available animal models has revealed much on the neurobiology of depression, but each model appears as specific to a significant extent, and distinction between stress response, pathogenesis of depression and underlying vulnerability is difficult to make. Evidence from epidemiological studies suggests that depression occurs in biologically predisposed subjects under impact of adverse life events. We applied the diathesis-stress concept to reveal brain regions and functional networks that mediate vulnerability to depression and response to chronic stress by collapsing data on cerebral long term neuronal activity as measured by cytochrome c oxidase histochemistry in distinct animal models. Rats were rendered vulnerable to depression either by partial serotonergic lesion or by maternal deprivation, or selected for a vulnerable phenotype (low positive affect, low novelty-related activity or high hedonic response). Environmental adversity was brought about by applying chronic variable stress or chronic social defeat. Several brain regions, most significantly median raphe, habenula, retrosplenial cortex and reticular thalamus, were universally implicated in long-term metabolic stress response, vulnerability to depression, or both. Vulnerability was associated with higher oxidative metabolism levels as compared to resilience to chronic stress. Chronic stress, in contrast, had three distinct patterns of effect on oxidative metabolism in vulnerable vs. resilient animals. In general, associations between regional activities in several brain circuits were strongest in vulnerable animals, and chronic stress disrupted this interrelatedness. These findings highlight networks that underlie resilience to stress, and the distinct response to stress that occurs in vulnerable subjects.


Assuntos
Encéfalo/fisiopatologia , Transtorno Depressivo/fisiopatologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Animais , Comportamento Animal/fisiologia , Doença Crônica , Transtorno Depressivo/etiologia , Modelos Animais de Doenças , Dominação-Subordinação , Masculino , Privação Materna , Vias Neurais/fisiopatologia , Fenótipo , Ratos , Resiliência Psicológica , Serotoninérgicos , Estresse Psicológico/complicações , Estresse Psicológico/fisiopatologia
15.
Biochim Biophys Acta ; 1832(12): 2332-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24090692

RESUMO

It is becoming evident that chronic exposure to stress not only might result in insulin resistance or cognitive deficits, but may also be considered a risk factor for pathologies such as depression or Alzheimer's disease (AD). There is great interest in determining the molecular mechanisms underlying interactions between stress, aging, memory and Alzheimer's disease (AD). We have used the chronic mild stress (CMS) model to study the effects of chronic stress on the aging process and the development of central insulin resistance and AD pathology. CMS aged mice showed cognitive impairments in the novel object recognition test. In addition, CMS aged mice displayed both peripheral insulin resistance, as shown by HOMA index, and decreased hippocampal levels of pIRS and downstream intracellular signaling (pAKT, pGSK and pERK1/2). Interestingly, there was a significant increase in both C99:C83 ratio and BACE1 levels in the hippocampus of CMS aged mice. Increased expression of the AD marker pTau was also found in stressed aged mice. Increased expression of the stress-activated protein kinase JNK was found in CMS aged mice, accompanied by significant decreases in glucocorticoid receptor (GR) expression and increases in mineralocorticoid receptor (MR) expression. It is suggested that the interaction of stress with aging should be considered when studying determinants of the onset and progression of AD.


Assuntos
Envelhecimento/patologia , Doença de Alzheimer/etiologia , Transtornos Cognitivos/etiologia , Resistência à Insulina , Transtornos da Memória/etiologia , Estresse Psicológico/complicações , Envelhecimento/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Western Blotting , Doença Crônica , Transtornos Cognitivos/patologia , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/patologia , Insulina/sangue , Transtornos da Memória/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Estresse Psicológico/patologia
16.
Psychoneuroendocrinology ; 38(10): 2010-22, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23623252

RESUMO

A causative relationship between inflammation and depression is gradually gaining consistency. Because Nrf2 participates in inflammation, we hypothesized that Nrf2 could play a role in depressive disorders. In this study, we have observed that Nrf2 deletion in mice results in: (i) a depressive-like behavior evaluated as an increase in the immobility time in the tail-suspension test and by a decrease in the grooming time in the splash test, (ii) reduced levels of dopamine and serotonin and increased levels of glutamate in the prefrontal cortex, (iii) altered levels of proteins associated to depression such as VEGF and synaptophysin and (iv) microgliosis. Furthermore, treatment of Nrf2 knockout mice with the anti-inflammatory drug rofecoxib reversed their depressive-like behavior, while induction of Nrf2 by sulforaphane, in an inflammatory model of depression elicited by LPS, afforded antidepressant-like effects. In conclusion, our results indicate that chronic inflammation due to a deletion of Nrf2 can lead to a depressive-like phenotype while induction of Nrf2 could become a new and interesting target to develop novel antidepressive drugs.


Assuntos
Transtorno Depressivo/genética , Inflamação/genética , Fator 2 Relacionado a NF-E2/fisiologia , Animais , Anti-Inflamatórios/metabolismo , Comportamento Animal/fisiologia , Transtorno Depressivo/sangue , Dopamina/sangue , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasticidade Neuronal/genética , Serotonina/sangue , Transdução de Sinais/genética
17.
Neuropharmacology ; 70: 190-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23168115

RESUMO

Unraveling the mechanisms of 5-HT neuron control might provide new insights into depression pathophysiology. In addition to the inhibitory 5-HT1A autoreceptors, cortico-raphe glutamatergic descending pathways are suggested to modulate 5-HT activity in the DRN. Here we studied how decreased VGLUT1 levels in the brain stem affect glutamate regulation of 5-HT function. VGLUT1+/- mice (C57BL/6) and wild type (WT) littermates were used. VGLUT1 expression in the DRN, 5-HT turnover and immuno histochemical analysis of neuronal activity in different areas was studied. Moreover, the functionality of the inhibitory 5-HT1A autoreceptor was assessed using electrophysiological, biochemical and pharmacological approaches. VGLUT1 immunoreactivity was markedly lower in the DRN of the VGLUT1+/- mice and specifically, in the surroundings of GABA and 5-HT cell bodies. These mice showed decreased induced neuronal activity in 5-HT cells bodies and in different forebrain areas, as well as decreased hippocampal cell proliferation and 5-HT turnover. Further, 5-HT1A autoreceptor desensitization was evidenced by electrophysiological studies, GTP-γ-S coupling to 5-HT1A autoreceptor and a lower hypothermic response to 5-HT1A activation. This study shows first time that VGLUT1 dependent glutamate innervation of the DRN could modulate 5-HT function.


Assuntos
Ácido Glutâmico/fisiologia , Núcleos da Rafe/metabolismo , Receptor 5-HT1A de Serotonina/fisiologia , Serotonina/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/biossíntese , Animais , Autorreceptores/fisiologia , Tronco Encefálico/metabolismo , Proliferação de Células , Expressão Gênica/genética , Hipocampo/fisiologia , Hipotermia/fisiopatologia , Masculino , Camundongos , Neurônios/metabolismo , Transdução de Sinais/fisiologia , Proteína Vesicular 1 de Transporte de Glutamato/genética
18.
Neuropharmacology ; 62(5-6): 1944-53, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22245561

RESUMO

The objective of the present work was to study the effects of an early-life stress (maternal separation, MS) in the excitatory/inhibitory ratio as a potential factor contributing to the ageing process, and the purported normalizing effects of chronic treatment with the antidepressant venlafaxine. MS induced depressive-like behaviour in the Porsolt forced swimming test that was reversed by venlafaxine, and that persisted until senescence. Aged MS rats showed a downregulation of vesicular glutamate transporter 1 and 2 (VGlut1 and VGlut2) and GABA transporter (VGAT) and increased expression of excitatory amino acid transporter 2 (EAAT2) in the hippocampus. Aged rats showed decreased expression of glutamic acid decarboxylase 65 (GAD65), while the excitatory amino acid transporter 1 (EAAT1) was affected only by stress. Glutamate receptor subunits NR1 and NR2A and GluR4 were upregulated in stressed rats, and this effect was reversed by venlafaxine. NR2B, GluR1 and GluR2/3 were not affected by either stress or age. MS, both in young and aged rats, induced an increase in the circulating levels of corticosterone. Corticosterone induced an increase glutamate and a decrease in GABA release in hippocampal slices, which was reversed by venlafaxine. Chronic treatment with corticosterone recapitulated the main biochemical findings observed in MS. The different effects that chronic stress exerts in young and adult animals on expression of proteins responsible for glutamate/GABA cycling may explain the involvement of glucocorticoids in ageing-related diseases. Modulation of glutamate/GABA release may be a relevant component of the therapeutic action of antidepressants, such as venlafaxine.


Assuntos
Depressão/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Privação Materna , Rede Nervosa/metabolismo , Neurônios/metabolismo , Ácido gama-Aminobutírico/metabolismo , Fatores Etários , Animais , Antidepressivos de Segunda Geração/farmacologia , Antidepressivos de Segunda Geração/uso terapêutico , Corticosterona/sangue , Cicloexanóis/farmacologia , Cicloexanóis/uso terapêutico , Depressão/tratamento farmacológico , Depressão/fisiopatologia , Transportador 1 de Aminoácido Excitatório/metabolismo , Feminino , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Glutamato Descarboxilase/metabolismo , Hipocampo/fisiopatologia , Masculino , Rede Nervosa/fisiopatologia , Ratos , Cloridrato de Venlafaxina
19.
J Chem Neuroanat ; 41(4): 227-33, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21704153

RESUMO

Depression and anxiety are among the leading causes of societal burden. Abnormalities in 5-hydroxytryptamine (5-HT; serotonin) neurotransmission are known to be associated with depressive and anxiety symptoms. The rostral projections of brainstem dorsal (DRN) and median (MRN) raphe nuclei are the main sources of forebrain 5-HT. The expression, turnover and distribution of tryptophan hydroxylase 2 (TPH2), the rate-limiting enzyme in 5-HT biosynthesis in the DRN and MRN are complex, in keeping with the existence of different subpopulations of 5-HT neurons in this area. In the present study, we measured the expression of TPH2 mRNA in the DRN and MRN using in situ hybridization in three genetically modified mouse models, all relevant to depression and anxiety, and matched wild-type controls. Our results show quantitative modifications in TPH2 mRNA expression in the three main subregions of the DRN as well as the MRN in relation to changes in serotonergic, glutamatergic and endocannabinoid neurotransmission systems. Thus, there were significant decreases in TPH2 transcript levels in 5-HT transporter (5-HTT)-/- mutant mice, whereas increases were observed in the vesicular glutamate transporter 1 hemi knock out (VGLUT1+/-) and cannabinoid receptor 1 mutant (CB1R-/-) mice. Based on these findings, we suggest that TPH2 mRNA expression is under the influence of multiple messenger systems in relation to presynaptic and/or postsynaptic feedback control of serotonin synthesis that, 5-HTT, VGLUT1 and CB1R seem to be involved in these feedback mechanisms. Finally, our data are in line with previous reports suggesting that TPH2 activity within different raphe subregions is differentially regulated under specific conditions.


Assuntos
RNA Mensageiro , Núcleos da Rafe/enzimologia , Receptor CB1 de Canabinoide , Proteínas da Membrana Plasmática de Transporte de Serotonina , Triptofano Hidroxilase , Proteína Vesicular 1 de Transporte de Glutamato , Animais , Ansiedade/enzimologia , Ansiedade/genética , Depressão/enzimologia , Depressão/genética , Hibridização In Situ , Camundongos , Camundongos Knockout , Modelos Animais , Neurônios/citologia , Neurônios/enzimologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Serotonina/genética , Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Transmissão Sináptica/genética , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/genética , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
20.
J Neurochem ; 114(5): 1302-14, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20550627

RESUMO

Depression has been linked to failure in synaptic plasticity originating from environmental and/or genetic risk factors. The chronic mild stress model regulates the expression of synaptic markers of neurotransmitter function and associated depressive-like behaviour. Moreover, mice heterozygous for the synaptic vesicle protein vesicular glutamate transporter 1 (VGLUT1), have been proposed as a genetic model of deficient glutamate function linked to depressive-like behaviour. Here, we aimed to identify, in these two experimental models, mechanisms of failure in synaptic plasticity, common to stress and impaired glutamate function. First, we show that chronic mild stress induced a transient decrease of different plasticity markers (VGLUT1, synapsin 1, sinaptophysin, rab3A and activity regulated cytoskeletal protein - Arc) but a long-lasting decrease of the brain derived neurotrophic factor as well as depressive-like behaviour. The immediate early gene Arc was also down-regulated in VGLUT1+/- heterozygous mice. In contrast, an opposite regulation of synapsin 1 was observed. Finally, both models showed a marked increase of cortical Arc response to novelty. Increased Arc response to novelty could be suggested as a molecular mechanism underlying failure to adapt to environmental changes, common to chronic stress and altered glutamate function. Further studies should investigate whether these changes are associated to depressive-like behaviour both in animal models and in depressed patients.


Assuntos
Transtorno Depressivo/metabolismo , Modelos Animais de Doenças , Estresse Psicológico/metabolismo , Sinapses/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/antagonistas & inibidores , Proteína Vesicular 1 de Transporte de Glutamato/biossíntese , Animais , Biomarcadores/metabolismo , Doença Crônica , Proteínas do Citoesqueleto/biossíntese , Transtorno Depressivo/genética , Transtorno Depressivo/fisiopatologia , Comportamento Exploratório/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/biossíntese , Inibição Neural/genética , Plasticidade Neuronal/genética , Distribuição Aleatória , Estresse Psicológico/genética , Sinapses/genética , Proteína Vesicular 1 de Transporte de Glutamato/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...