Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Res Bull ; 139: 67-80, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29421245

RESUMO

BACKGROUND: Brain derived neurotrophic factor (BDNF) is one of the most essential neurotrophic factors in the brain. BDNF is involved in learning, memory and locomotion suggesting it as a target in type 2 diabetes mellitus (T2DM) associated cognitive changes. Visfatin; an adipokine discovered to be expressed in the brain; was found to have multiple effects including its participation in keeping energy supply to the cell and is consequentially involved in cell survival. Its role in cognitive functions in T2DM was not studied before. Recent studies point to the possible neuro-protective mechanisms of glucagon-like peptide 1 analogue: Exendin-4 (Ex-4) in many cognitive disorders, but whether BDNF or Visfatin are involved or not in its neuro-protective mechanisms; is still unknown. AIMS: to study the changes in cognitive functions in T2DM, either not treated or treated with Glucagon-like peptide 1 (GLP-1) analogue: Ex-4, and to identify the possible underlying mechanisms of these changes and whether BDNF and brain Visfatin are involved. METHODS: A total of 36 adult male wistar albino rats were divided into 4 groups; Control, Exendin-4 control, Diabetic and Exendin-4 treated groups. At the end of the study, Y-maze and open field tests were done the day before scarification to assess spatial working memory and locomotion, respectively. Fasting glucose and insulin, lipid profile and tumor necrosis factor- alpha (TNF-α) were measured in the serum. Homeostasis model assessment insulin resistance was calculated. In the brain tissue, malondialdehyde (MDA) level, gene expression and protein levels of BDNF and Visfatin, area of degenerated neurons, area of glial cells and area % of synaptophysin immunoexpression were assessed. RESULTS: Compared with the control, the untreated diabetic rats showed insulin resistance, dyslipidemia and elevation of serum TNF-α. The brain tissue showed down-regulation of BDNF gene expression and reduction of its protein level, up-regulation of Visfatin gene expression and elevation of its protein level, increase in MDA, area of degenerated neurons and area of glial cells and reduction in area % of synaptophysin immunoexpression. These changes were paralleled with significant deterioration in spatial working memory and locomotion. Treatment of diabetic rats with Ex-4 reversed all these changes. CONCLUSION: T2DM has a negative impact on cognitive functions through different pathological and subcellular mechanisms. The current study provides evidence for involvement of BDNF and brain Visfatin in T2DM- associated cognitive dysfunction. BDNF and brain Visfatin were also found to contribute to the neuro-protective effect of Ex-4 via modulation of inflammation, oxidative stress, neuro-degeneration and synaptic function.


Assuntos
Fármacos Antiobesidade/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Encéfalo/metabolismo , Transtornos Cognitivos/tratamento farmacológico , Exenatida/uso terapêutico , Nicotinamida Fosforribosiltransferase/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Transtornos Cognitivos/etiologia , Diabetes Mellitus Tipo 2/complicações , Modelos Animais de Doenças , Masculino , Malondialdeído/metabolismo , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...