Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurotrauma ; 36(5): 789-801, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30014759

RESUMO

Traumatic brain injury (TBI) results in well-known, significant alterations in structural and functional connectivity. Although this is especially likely to occur in areas of pathology, deficits in function to and from remotely connected brain areas, or diaschisis, also occur as a consequence to local deficits. As a result, consideration of the network wiring of the brain may be required to design the most efficacious rehabilitation therapy to target specific functional networks to improve outcome. In this work, we model remote connections after controlled cortical impact injury (CCI) in the rat through the effect of callosal deafferentation to the opposite, contralesional cortex. We show rescue of significantly reaching deficits in injury-affected forelimb function if temporary, neuromodulatory silencing of contralesional cortex function is conducted at 1 week post-injury using the γ-aminobutyric acid (GABA) agonist muscimol, compared with vehicle. This indicates that subacute, injury-induced remote circuit modifications are likely to prevent normal ipsilesional control over limb function. However, by conducting temporary contralesional cortex silencing in the same injured rats at 4 weeks post-injury, injury-affected limb function either remains unaffected and deficient or is worsened, indicating that circuit modifications are more permanently controlled or at least influenced by the contralesional cortex at extended post-injury times. We provide functional magnetic resonance imaging (MRI) evidence of the neuromodulatory effect of muscimol on forelimb-evoked function in the cortex. We discuss these findings in light of known changes in cortical connectivity and excitability that occur in this injury model, and postulate a mechanism to explain these findings.


Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Lateralidade Funcional/fisiologia , Agonistas de Receptores de GABA-A/farmacologia , Muscimol/farmacologia , Vias Neurais/fisiopatologia , Recuperação de Função Fisiológica/fisiologia , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiopatologia , Membro Anterior , Lateralidade Funcional/efeitos dos fármacos , Masculino , Vias Neurais/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Extremidade Superior
2.
J Neurotrauma ; 35(20): 2448-2461, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29717625

RESUMO

Although cognitive and behavioral deficits are well known to occur following traumatic brain injury (TBI), motor deficits that occur even after mild trauma are far less known, yet are equally persistent. This study was aimed at making progress toward determining how the brain reorganizes in response to TBI. We used the adult rat controlled cortical impact injury model to study the ipsilesional forelimb map evoked by electrical stimulation of the affected limb, as well as the contralesional forelimb map evoked by stimulation of the unaffected limb, both before injury and at 1, 2, 3, and 4 weeks after using functional magnetic resonance imaging (fMRI). End-point c-FOS immunohistochemistry data following 1 h of constant stimulation of the unaffected limb were acquired in the same rats to avoid any potential confounds due to altered cerebrovascular coupling. Single and paired-pulse sensory evoked potential (SEP) data were recorded from skull electrodes over the contralesional cortex in a parallel series of rats before injury, at 3 days, and at 1, 2, 3, and 4 weeks after injury in order to determine whether alterations in cortical excitability accompanied reorganization of the cortical map. The results show a transient trans-hemispheric shift in the ipsilesional cortical map as indicated by fMRI, remote contralesional increases in cortical excitability that occur in spatially similar regions to altered fMRI activity and greater c-FOS activation, and reduced or absent ipsilesional cortical activity chronically. The contralesional changes also were indicated by reduced SEP latency within 3 days after injury, but not by blood oxygenation level-dependent fMRI until much later. Detailed interrogation of cortical excitability using paired-pulse electrophysiology showed that the contralesional cortex undergoes both an early and a late post-injury period of hyper-excitability in response to injury, interspersed by a period of relatively normal activity. From these data, we postulate a cross-hemispheric mechanism by which remote cortex excitability inhibits ipsilesional activation by rebalanced cortical excitation-inhibition.


Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Córtex Cerebral/fisiopatologia , Excitabilidade Cortical/fisiologia , Lateralidade Funcional/fisiologia , Atividade Motora/fisiologia , Animais , Mapeamento Encefálico/métodos , Membro Anterior/inervação , Membro Anterior/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Masculino , Ratos , Ratos Sprague-Dawley
3.
Ann Neurol ; 82(1): 115-120, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28556259

RESUMO

Status epilepticus is common in neonates and infants, and is associated with neuronal injury and adverse developmental outcomes. γ-Aminobutyric acidergic (GABAergic) drugs, the standard treatment for neonatal seizures, can have excitatory effects in the neonatal brain, which may worsen the seizures and their effects. Using a recently developed model of status epilepticus in postnatal day 7 rat pups that results in widespread neuronal injury, we found that the GABAA agonists phenobarbital and midazolam significantly increased status epilepticus-associated neuronal injury in various brain regions. Our results suggest that more research is needed into the possible deleterious effects of GABAergic drugs on neonatal seizures and on excitotoxic neuronal injury in the immature brain. Ann Neurol 2017;82:115-120.


Assuntos
Midazolam/efeitos adversos , Neurônios/patologia , Fenobarbital/efeitos adversos , Animais , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Contagem de Células , Feminino , Masculino , Ratos , Estado Epiléptico/patologia
4.
Epilepsy Res ; 120: 47-54, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26709882

RESUMO

OBJECTIVE: Status Epilepticus (SE) is common in neonates and infants, and is associated with neuronal injury and adverse developmental outcomes. However, the role of SE in this injury is uncertain. Until now, we have lacked an animal model in which seizures result in neuronal injury in rodent models at ages below postnatal day 12 (P12) unless seizures are combined with inflammatory stressors. METHODS: We induced SE with high-dose lithium and pilocarpine in P7 rats, which are developmentally close to human neonates. Several EEG measures and O2 saturation were recorded during the 6h following initiation of SE. We assessed neuronal injury at 6 and 24h post-SE onset using Fluoro-Jade B staining (FJB) and caspase-3a immunoreactivity (IR). RESULTS: EEGs showed continuous polyspikes activity for 54.3 ± 6.7 min, while O2 saturation showed no significant hypoxemia. By 24h after SE onset, significant neuronal injury was observed in CA1/subiculum, CA3, dentate gyrus, thalamus, neocortex, amygdala, piriform cortex, lateral entorhinal cortex, hypothalamus, caudate putamen, globus pallidus, ventral pallidum, and nucleus accumbens. At 24h post-SE, caspase-3a IR was significantly increased in CA1/subiculum, thalamus, and neocortex compared to sham, and caspase-3a IR neurons had fragmented nuclei, suggesting that SE triggered an irreversible form of cell injury. SIGNIFICANCE: In conclusion, we have developed a model of cholinergic SE in P7 rat pups, which combines high survival (69.9% survival at 24h) and widespread brain injury. These studies suggest that the immature brain is vulnerable to severe forms of SE.


Assuntos
Encéfalo/patologia , Encéfalo/fisiopatologia , Neurônios/patologia , Neurônios/fisiologia , Estado Epiléptico/patologia , Estado Epiléptico/fisiopatologia , Animais , Animais Recém-Nascidos , Caspase 3/metabolismo , Modelos Animais de Doenças , Eletrocorticografia , Eletroencefalografia , Feminino , Imuno-Histoquímica , Compostos de Lítio , Masculino , Oxigênio/metabolismo , Pilocarpina , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...