Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroimage ; 34(3): 1136-48, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17134913

RESUMO

Functional near infrared spectro-imaging (fNIRSI) is potentially a very useful technique for obtaining information about the underlying physiology of the blood oxygenation level dependent (BOLD) signal used in functional magnetic resonance imaging (fMRI). In this paper the temporal and spatial statistical characteristics of fNIRSI data are compared to those of simultaneously acquired fMRI data in the human visual cortex during a variable-frequency reversing checkerboard activation paradigm. Changes in the size of activated volume caused by changes in checkerboard reversal frequency allowed a comparison of the behavior of the spatial responses measured by the two imaging methods. fNIRSI and fMRI data were each analyzed using standard correlation and fixed-effect group analyses of variance pathways. The statistical significance of fNIRSI data was found to be much lower than that of the fMRI data, due mainly to the low signal-to-noise of the measurements. Reconstructed images also showed that, while the time-course of changes in the oxy-, deoxy-, and total hemoglobin concentrations all exhibit high correlation with that of the BOLD response, the changes in the volume of tissue measured as "activated" by the BOLD response demonstrate a closer similarity to the corresponding changes in the oxy- and total hemoglobin concentrations than to that of the deoxyhemoglobin.


Assuntos
Mapeamento Encefálico/métodos , Potenciais Evocados Visuais/fisiologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Espectrofotometria Infravermelho/métodos , Córtex Visual/irrigação sanguínea , Córtex Visual/fisiologia , Adulto , Algoritmos , Circulação Cerebrovascular/fisiologia , Feminino , Humanos , Aumento da Imagem/métodos , Masculino , Estimulação Luminosa/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Integração de Sistemas , Percepção Visual/fisiologia
2.
Rev Sci Instrum ; 77(11): 114301-1143018, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21399741

RESUMO

An integrated measurement system is described for performing simultaneous functional magnetic resonance imaging (fMRI) and diffuse optical tomography (DOT) for human brain mapping experiments. The components of this system consist of an MRI-compatible multi-overlapping-channel optical probe, methods for co-registration of optical and fMRI measurements, and DOT reconstruction algorithms with structural and physiological constraints derived from the MRI data. The optical probe is fully MRI-compatible in the sense that it produces negligible MR image distortion and does not require any modification to the MRI scanner or data acquisition protocol. The probe can be attached to any part of the head without posing any limitation on optical data acquisition. Co-registration of images from fMRI and optical measurements was achieved by localizing the positions of the optical fibers using MRI markers. Human studies show successful implementation of the entire system.

3.
Proc SPIE Int Soc Opt Eng ; 61632006 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-21776186

RESUMO

We use our new combined functional near infrared spectro-imaging (fNIRSI) and magnetic resonance imaging (MRJ) technique to compare fMRI and fNIRSI data at different activation conditions, to obtain new information about the underlying physiology of the blood oxygen level dependent (BOLD) signal used in fMRI, and to assess statistical characteristics of spatial functional information provided by the group analysis of fNIRSI data. To achieve these goals we have acquired simultaneously fNIRSI and fMRI data during the presentation of the checkerboard reversing with different frequencies, and analyzed these data following the standard correlation and group analysis of variance pathway used in functional neuroimaging. . We have found that while the time courses of oxy-, deoxy-, and total- hemoglobin responses are equally well correlated with the time course of the BOLD response, the spatial pattern and magnitude of the BOLD response is better related to those of the oxy-, and total- hemoglobin responses rather than to the deoxyhemoglobin response. The statistical significance of the fNIRSI group maps is inferior to that of fMRI, and can be particularly compromised by the anatomical features of subjects.

4.
Proc SPIE Int Soc Opt Eng ; 5696: 117-124, 2005 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-21738383

RESUMO

Near-infrared spectro-imaging (NIRSI) is a quickly developing method for the in-vivo imaging of biological tissues. In particular, it is now extensively employed for imaging the human brain. In this non-invasive technique, the information about the brain is obtained from the analysis of spatial light bundles formed by the photons traveling from light sources to detectors placed on the surface of the head. Most significant problems in the functional brain NIRSI are the separation of the brain information from the physiological noise in non-cerebral tissues, and the localization of functional signals. In this paper we describe signal and image processing techniques we developed in order to measure two types of functional cerebral signals: the hemodynamic responses, and neuronal responses.

5.
Proc SPIE Int Soc Opt Eng ; 5686: 543-546, 2005 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-21769244

RESUMO

We use near-infrared spectroscopy to investigate hemodynamic changes in humans during a breath holding exercise and their influence on the BOLD fMRI signal. We have quantitatively compared the BOLD fMRI signals with the hemoglobin concentration changes using correlation analysis of NIRS and fMRI data.

6.
Proc SPIE Int Soc Opt Eng ; 5686(115): 566-572, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-21776185

RESUMO

The integration of near-infrared (NIR) and functional MRI (fMRI) studies is potentially a powerful method to investigate the physiological mechanism of human cerebral activity. However, current NIR methodologies do not provide adequate accuracy of localization and are not fully integrated with MRI in the sense of mutual enhancement of the two imaging modalities. Results are presented to address these issues by developing an MRI-compatible optical probe and using diffuse optical tomography for optical image reconstruction. We have developed a complete methodology that seamlessly integrates NIR tomography with fMRI data acquisition. In this paper, we apply this methodology to determine both hemodynamic and early neuronal responses in the visual cortex in humans. Early results indicate that the changes in deoxyhemoglobin concentration from optical data are co-localized with fMRI BOLD signal changes, but changes in oxyhemoglobin concentration (not measurable using fMRI) show interesting spatial differences.

7.
Proc SPIE Int Soc Opt Eng ; 5686: 453-463, 2005 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-21796235

RESUMO

We present an integrated methodology for human brain mapping by simultaneous BOLD fMRI and NIR imaging. This methodology consists of three innovative components: the construction of MRI-compatible optical probes that can be affixed to any part of the human head inside a standard MRI head-coil with minimal MR image distortion, the accurate determination of optode positions on the head from MR images, and the application of a perturbation approach and Monte Carlo method to compute the integral kernel of the Born solution to the diffusion equation for baseline optical properties. This integrated approach has been used to demonstrate promising capabilities for studying functional hemodynamic activation in human visual cortex by simultaneous fMRI and NIR tomography.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...