Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Cogn Neurosci ; 36: 100636, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30913497

RESUMO

Reading is explicitly taught and foreshadows academic and vocational success. Studies comparing typical readers to those with developmental dyslexia have identified anatomical brain differences in bilateral temporo-parietal cortex, left temporo-occipital cortex, and bilateral cerebellum. Yet, it is unclear whether linear relationships exist between these brain structures and single real word reading ability in the general population. If dyslexia represents the lower end of the normal continuum, then relationships between gray matter volume (GMV) and reading ability would exist for all reading levels. Our study examined this question using voxel-based morphometry in a large sample (n = 404) of typically developing participants aged 6-22 derived from the NIH normative database. We tested correlations between individual GMV and single word reading and found none. After dividing this sample into groups based on age and on sex, we only found results in the group aged 15-22: positive correlations between GMV in left fusiform gyrus and reading, driven by females; and in right superior temporal gyrus in males. Multiple regressions also yielded no results, demonstrating that there is no general linear relationship between GMV and single real word reading ability. This provides an important context by which to interpret findings of GMV differences in dyslexia.


Assuntos
Mapeamento Encefálico/métodos , Desenvolvimento Infantil/fisiologia , Substância Cinzenta/crescimento & desenvolvimento , Leitura , Adolescente , Adulto , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto Jovem
3.
Front Hum Neurosci ; 10: 610, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28018192

RESUMO

Expertise and training in fine motor skills has been associated with changes in brain structure, function, and connectivity. Fewer studies have explored the neural effects of athletic activities that do not seem to rely on precise fine motor control (e.g., distance running). Here, we compared resting-state functional connectivity in a sample of adult male collegiate distance runners (n = 11; age = 21.3 ± 2.5) and a group of healthy age-matched non-athlete male controls (n = 11; age = 20.6 ± 1.1), to test the hypothesis that expertise in sustained aerobic motor behaviors affects resting state functional connectivity in young adults. Although generally considered an automated repetitive task, locomotion, especially at an elite level, likely engages multiple cognitive actions including planning, inhibition, monitoring, attentional switching and multi-tasking, and motor control. Here, we examined connectivity in three resting-state networks that link such executive functions with motor control: the default mode network (DMN), the frontoparietal network (FPN), and the motor network (MN). We found two key patterns of significant between-group differences in connectivity that are consistent with the hypothesized cognitive demands of elite endurance running. First, enhanced connectivity between the FPN and brain regions often associated with aspects of working memory and other executive functions (frontal cortex), suggest endurance running may stress executive cognitive functions in ways that increase connectivity in associated networks. Second, we found significant anti-correlations between the DMN and regions associated with motor control (paracentral area), somatosensory functions (post-central region), and visual association abilities (occipital cortex). DMN deactivation with task-positive regions has been shown to be generally beneficial for cognitive performance, suggesting anti-correlated regions observed here are engaged during running. For all between-group differences, there were significant associations between connectivity, self-reported physical activity, and estimates of maximum aerobic capacity, suggesting a dose-response relationship between engagement in endurance running and connectivity strength. Together these results suggest that differences in experience with endurance running are associated with differences in functional brain connectivity. High intensity aerobic activity that requires sustained, repetitive locomotor and navigational skills may stress cognitive domains in ways that lead to altered brain connectivity, which in turn has implications for understanding the beneficial role of exercise for brain and cognitive function over the lifespan.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...