Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(27): 10425-10435, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38994405

RESUMO

Glycerol, a primary by-product of biodiesel production, can be oxidized into various value-added chemicals, significantly enhancing the techno-economic value of photoelectrochemical (PEC) cells. Several studies have explored various photoelectrode materials and co-catalysts, but the influence of electrolytes on PEC glycerol oxidation has remained relatively unexplored despite its significance. Here, we explore the impact of various acidic (pH = 2) electrolytes, namely NaNO3, NaClO4, Na2SO4, K2SO4, and KPi, on PEC glycerol oxidation using nanoporous thin film BiVO4 as a model photoanode. Our experimental findings reveal that the choice of electrolyte anion and cation significantly affects the PEC performance (i.e., photocurrent, onset potential, stability, and selectivity towards value-added products) of BiVO4 for glycerol oxidation. To explain this interesting phenomenon, we correlate the observed performance trend with the ion specificity in the Hofmeister series as well as the buffering capacity of the electrolytes. Notably, NaNO3 is identified as the optimal electrolyte for PEC glycerol oxidation with BiVO4 when considering various factors such as stability and production rates for glycerol oxidation reaction (GOR) products, surpassing the previously favored Na2SO4. Glycolaldehyde emerges as the most dominant product with ∼50% selectivity in NaNO3. The general applicability of our findings is confirmed by similar observation in electrochemical (EC) GOR with a polycrystalline platinum anode. Overall, these results emphasize the critical role of electrolyte selection in enhancing the efficiency of EC/PEC glycerol oxidation.

2.
Environ Microbiol Rep ; 16(3): e13272, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692845

RESUMO

Native microbial consortia have been proposed for biological wastewater treatment, but their diversity and function remain poorly understood. This study investigated three native microalgae-bacteria consortia collected from the Amazon, Highlands, and Galapagos regions of Ecuador to assess their metagenomes and wastewater remediation potential. The consortia were evaluated for 12 days under light (LC) and continuous dark conditions (CDC) to measure their capacity for nutrient and organic matter removal from synthetic wastewater (SWW). Overall, all three consortia demonstrated higher nutrient removal efficiencies under LC than CDC, with the Amazon and Galapagos consortia outperforming the Highlands consortium in nutrient removal capabilities. Despite differences in α- and ß-diversity, microbial species diversity within and between consortia did not directly correlate with their nutrient removal capabilities. However, all three consortia were enriched with core taxonomic groups associated with wastewater remediation activities. Our analyses further revealed higher abundances for nutrient removing microorganisms in the Amazon and Galapagos consortia compared with the Highland consortium. Finally, this study also uncovered the contribution of novel microbial groups that enhance wastewater bioremediation processes. These groups have not previously been reported as part of the core microbial groups commonly found in wastewater communities, thereby highlighting the potential of investigating microbial consortia isolated from ecosystems of megadiverse countries like Ecuador.


Assuntos
Bactérias , Metagenômica , Consórcios Microbianos , Águas Residuárias , Equador , Águas Residuárias/microbiologia , Consórcios Microbianos/genética , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação , Microalgas/classificação , Microalgas/metabolismo , Purificação da Água , Biodegradação Ambiental , Metagenoma
3.
Front Bioeng Biotechnol ; 12: 1338547, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468686

RESUMO

In low-middle income countries (LMIC), wastewater treatment using native microalgal-bacterial consortia has emerged as a cost-effective and technologically-accessible remediation strategy. This study evaluated the effectiveness of six microalgal-bacterial consortia (MBC) from the Ecuadorian Amazon in removing organic matter and nutrients from non-sterilized domestic wastewater (NSWW) and sterilized domestic wastewater (SWW) samples. Microalgal-bacterial consortia growth, in NSWW was, on average, six times higher than in SWW. Removal rates (RR) for NH4 +- N and PO4 3--P were also higher in NSWW, averaging 8.04 ± 1.07 and 6.27 ± 0.66 mg L-1 d-1, respectively. However, the RR for NO3 - -N did not significantly differ between SWW and NSWW, and the RR for soluble COD slightly decreased under non-sterilized conditions (NSWW). Our results also show that NSWW and SWW samples were statistically different with respect to their nutrient concentration (NH4 +-N and PO4 3--P), organic matter content (total and soluble COD and BOD5), and physical-chemical parameters (pH, T, and EC). The enhanced growth performance of MBC in NSWW can be plausibly attributed to differences in nutrient and organic matter composition between NSWW and SWW. Additionally, a potential synergy between the autochthonous consortia present in NSWW and the native microalgal-bacterial consortia may contribute to this efficiency, contrasting with SWW where no active autochthonous consortia were observed. Finally, we also show that MBC from different localities exhibit clear differences in their ability to remove organic matter and nutrients from NSWW and SWW. Future research should focus on elucidating the taxonomic and functional profiles of microbial communities within the consortia, paving the way for a more comprehensive understanding of their potential applications in sustainable wastewater management.

4.
ACS Omega ; 8(50): 47821-47834, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38144128

RESUMO

The discharge of synthetic dyes from different industrial sources has become a global issue of concern. Enormous amounts are released into wastewater each year, causing concerns due to the high toxic consequences. Photocatalytic semiconductors appear as a green and sustainable form of remediation. Among them, graphitic carbon nitride (g-C3N4) has been widely studied due to its low cost and ease of fabrication. In this work, the synthesis, characterization, and photocatalytic study over methylene blue of undoped, B/S-doped, and exfoliated heterojunctions of g-C3N4 are presented. The evaluation of the photocatalytic performance showed that exfoliated undoped/S-doped heterojunctions with 25, 50, and 75 mass % of S-doped (g-C3N4) present enhanced activity with an apparent reaction rate constant (kapp) of 1.92 × 10-2 min-1 for the 75% sample. These results are supported by photoluminescence (PL) experiments showing that this heterojunction presents the less probable electron-hole recombination. UV-vis diffuse reflectance and valence band-X-ray photoelectron spectroscopy (VB-XPS) allowed the calculation of the band-gap and the valence band positions, suggesting a band structure diagram describing a type I heterojunction. The photocatalytic activities calculated demonstrate that this property is related to the surface area and porosity of the samples, the semiconductor nature of the g-C3N4 structure, and, in this case, the heterojunction that modifies the band structure. These results are of great importance considering that scarce reports are found concerning exfoliated B/S-doped heterojunctions.

5.
Sex Reprod Health Matters ; 31(1): 2249284, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37712990

RESUMO

Reducing the adolescent birth rate is paramount in achieving the health-related Sustainable Development Goals, given that pregnancy and childbirth are the leading cause of mortality among young women aged 15-19. This study aimed to explore predictors of adolescent pregnancy among girls aged 13-18 years in Maharashtra, India, during the COVID-19 pandemic. Using a mixed-methods approach, primary data were gathered from two regions in Maharashtra between February and April 2022. Quantitative data from face-to-face interviews with 3049 adolescent girls assessed various household, social, and behavioural factors, as well as the socioeconomic and health impacts of COVID-19. Qualitative data from seven in-depth interviews were analysed thematically. The findings reveal that girls from low socioeconomic backgrounds face a higher likelihood of adolescent pregnancy. Multivariable analysis identified several factors associated with increased risk, including older age, being married, having more sexual partners, and experiencing COVID-19-related economic vulnerability. On the other hand, rural residence, secondary and higher secondary education of the participants, and higher maternal education were associated with a decreased likelihood of adolescent pregnancy. In the sub-sample of 565 partnered girls, partner's emotional abuse also correlated with higher rates of adolescent pregnancy. Thematic analysis of qualitative data identified four potential pathways leading to adolescent pregnancy: economic hardships and early marriage; personal safety, social norms, and early marriage; social expectations; and lack of knowledge on contraceptives. The findings underscore the significance of social position and behavioural factors and the impact of external shocks like the COVID-19 pandemic in predicting adolescent pregnancy in Maharashtra, India.Plain Language Summary: Adolescent pregnancy is an important health issue for young girls. In South Asia, one out of every five adolescent girls becomes a mother before turning 18, and in India, around 9% of girls aged 15-19 get pregnant yearly. This study focused on understanding the factors associated with adolescent pregnancy in Maharashtra, India, especially after the COVID-19 pandemic. We collected information from both urban and rural areas in Maharashtra. A total of 3049 adolescent girls participated in a survey, and seven girls participated in detailed interviews. Our analysis showed that factors like older age, being married, having multiple sexual partners, and experiencing economic difficulties due to COVID-19 increased the chances of adolescent pregnancy. On the other hand, living in rural areas, higher education for both the girls and their mothers reduced the likelihood of adolescent pregnancy. Qualitative analysis revealed that economic challenges, concerns about safety and societal norms, early marriage, societal expectations, and lack of knowledge about contraceptives could contribute to adolescent pregnancy in Maharashtra.


Assuntos
COVID-19 , Gravidez na Adolescência , Adolescente , Gravidez , Humanos , Feminino , Índia/epidemiologia , COVID-19/epidemiologia , Pandemias , Anticoncepcionais , Mães
6.
Front Plant Sci ; 13: 903661, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35755685

RESUMO

The introduction of Lupinus mutabilis (Andean lupin) in Europe will provide a new source of protein and oil for plant-based diets and biomass for bio-based products, while contributing to the improvement of marginal soils. This study evaluates for the first time the phenotypic variability of a large panel of L. mutabilis accessions both in their native environment and over two cropping conditions in Europe (winter crop in the Mediterranean region and summer crop in North-Central Europe), paving the way for the selection of accessions adapted to specific environments. The panel of 225 accessions included both germplasm pools from the Andean region and breeding lines from Europe. Notably, we reported higher grain yield in Mediterranean winter-cropping conditions (18 g/plant) than in the native region (9 g/plant). Instead, North European summer-cropping conditions appear more suitable for biomass production (up to 2 kg/plant). The phenotypic evaluation of 16 agronomical traits revealed significant variation in the panel. Principal component analyses pointed out flowering time, yield, and architecture-related traits as the main factors explaining variation between accessions. The Peruvian material stands out among the top-yielding accessions in Europe, characterized by early lines with high grain yield (e.g., LIB065, LIB072, and LIB155). Bolivian and Ecuadorian materials appear more valuable for the selection of genotypes for Andean conditions and for biomass production in Europe. We also observed that flowering time in the different environments is influenced by temperature accumulation. Within the panel, it is possible to identify both early and late genotypes, characterized by different thermal thresholds (600°C-700°C and 1,000-1,200°C GDD, respectively). Indications on top-yielding and early/late accessions, heritability of morpho-physiological traits, and their associations with grain yield are reported and remain largely environmental specific, underlining the importance of selecting useful genetic resources for specific environments. Altogether, these results suggest that the studied panel holds the genetic potential for the adaptation of L. mutabilis to Europe and provide the basis for initiating a breeding program based on exploiting the variation described herein.

7.
ACS Omega ; 7(18): 15580-15595, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35571838

RESUMO

Polypyrrole (PPy) is a promising material for the fabrication of flexible energy storage devices and much research has been published. However, no statistical tools have been used to relate PPy synthesis conditions to its energy storage performance, considering not only the main synthesis factors but also their interactions. In this work, we use a factorial design of experiments to evaluate the influence of two electropolymerization methods and three synthesis parameters on the energy storage capacity of PPy coatings. The polymers were characterized by cyclic voltammetry (CV), galvanostatic charge/discharge (GCD), electrochemical impedance spectroscopy (EIS), Raman spectroscopy, and scanning electron microscopy (SEM). Statistical tests showed that ClO4 --doped PPy exhibits higher capacitances than p-toluenesulfonate (pTS)-doped PPy, with a maximum capacitance of 353.75 ± 1.6 F g-1 at 1 A g-1. However, the pTS-doped PPy had better cycling stability, losing only 10% of its original energy storage capability after 5000 charge-discharge cycles at 1 A g-1. The best energy densities and power densities were 49.1 ± 0.2 Wh kg-1 and 2297 ± 15 W kg-1 (ClO4 --doped PPy) and 47.8 ± 1.5 Wh kg-1 and 2191 ± 91 W kg-1 (pTS-doped PPy), respectively, which indicates that through statistical tools, the optimal synthesis conditions are refined to take advantage of the energy storage properties of this polymer.

8.
Proc Natl Acad Sci U S A ; 119(10): e2119373119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35238625

RESUMO

SignificanceContemporary social sciences aim to be diverse and inclusive, but traces of the historical dominance of Western European and North American academic institutions persist in scientific practices. One such practice is the phrasing of article titles. Our analysis shows that articles studying the global North are systematically less likely to mention the name of the country they study in their title compared to articles on the global South. This constitutes, potentially, an unwarranted claim on universality and may lead to lesser recognition of global South studies. Social and behavioral scientists must reflect on the phrasing of their article titles to avoid reproducing harmful relations of intellectual domination which limit inclusivity and constitute a barrier to the generalizability of scientific knowledge.

9.
Demogr Res ; 46(2): 37-64, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35210939

RESUMO

BACKGROUND: While recent decades have seen gradual convergence in ethno-racial disparities in completed fertility in the United States, differences in the age pattern of first births remain. The role of nativity has not been fully understood. OBJECTIVE: This paper examines how first births vary by nativity, and how this variation contributes to more significant racial and ethnic differentials. METHODS: Using data from the National Survey of Family Growth (1997-2017), we jointly estimate the correlates of the timing of first births and childlessness. We assess differences between immigrants and US-born and child-migrant women across ethno-racial groups. RESULTS: The unique first-birth patterns among foreign-born women have a notable impact on Hispanics, reducing differences from Whites in the average age at first birth and contributing to more significant differentials in childlessness. The impact of immigrant women on White and Black first births is more modest in scope. CONTRIBUTION: Our work shows the importance of nativity for ethnic/racial disparities in the timing and quantum of fertility in the United States. We demonstrate how the migrant population is more determinant for Hispanic fertility patterns than for Black or White. We conclude by elaborating on the implications of these results for future research as the immigrant population in the United States becomes ethnically and racially more diverse.

10.
PeerJ ; 8: e9597, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32944417

RESUMO

Capuli (Prunus serotina subsp. capuli) is a tree species that is widely distributed in the northern Andes. In Prunus, fruit set and productivity appears to be limited by gametophytic self-incompatibility (GSI) which is controlled by the S-Locus. For the first time, this research reveals the molecular structure of the capuli S-RNase (a proxy for S-Locus diversity) and documents how S-Locus diversity influences GSI in the species. To this end, the capuli S-RNase gene was amplified and sequenced in order to design a CAPS (Cleaved Amplified Polymorphic Sequence) marker system that could unequivocally detect S-alleles by targeting the highly polymorphic C2-C3 S-RNase intra-genic region. The devised system proved highly effective. When used to assess S-Locus diversity in 15 P. serotina accessions, it could identify 18 S-alleles; 7 more than when using standard methodologies for the identification of S-alleles in Prunus species. CAPS marker information was subsequently used to formulate experimental crosses between compatible and incompatible individuals (as defined by their S-allelic identity). Crosses between heterozygote individuals with contrasting S-alleles resulted in normal pollen tube formation and growth. In crosses between individuals with exactly similar S-allele identities, pollen tubes often showed morphological alterations and arrested development, but for some (suspected) incompatible crosses, pollen tubes could reach the ovary. The latter indicates the possibility of a genotype-specific breakdown of GSI in the species. Overall, this supports the notion that S-Locus diversity influences the reproductive patterns of Andean capuli and that it should be considered in the design of orchards and the production of basic propagation materials.

11.
Front Plant Sci ; 10: 478, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31040858

RESUMO

Despite significant progress toward the commercialization of biobased products, today's biorefineries are far from achieving their intended goal of total biomass valorization and effective product diversification. The problem is conceptual. Modern biorefineries were built around well-optimized, cost-effective chemical synthesis routes, like those used in petroleum refineries for the synthesis of fuels, plastics, and solvents. However, these were designed for the conversion of fossil resources and are far from optimal for the processing of biomass, which has unique chemical characteristics. Accordingly, existing biomass commodities were never intended for modern biorefineries as they were bred to meet the needs of conventional agriculture. In this perspective paper, we propose a new path toward the design of efficient biorefineries, which capitalizes on a cross-disciplinary synergy between plant, physical, and catalysis science. In our view, the best opportunity to advance profitable and sustainable biorefineries requires the parallel development of novel feedstocks, conversion protocols and synthesis routes specifically tailored for total biomass valorization. Above all, we believe that plant biologists and process technologists can jointly explore the natural diversity of plants to synchronously develop both, biobased crops with designer chemistries and compatible conversion protocols that enable maximal biomass valorization with minimum input utilization. By building biorefineries from the bottom-up (i.e., starting with the crop), the envisioned partnership promises to develop cost-effective, biomass-dedicated routes which can be effectively scaled-up to deliver profitable and resource-use efficient biorefineries.

12.
Environ Technol ; 40(22): 2977-2985, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29600735

RESUMO

The aim of this project was to study the feasibility of utilizing native microalgae for the removal of nitrogen and phosphorus, as a potential secondary wastewater treatment process in Ecuador. Agitation and aeration batch experiments were conducted using synthetic secondary wastewater effluent, to determine nitrogen and phosphorus removal efficiencies by a native Ecuadorian microalgal strain. Experimental results indicated that microalgal cultures could successfully remove nitrogen and phosphorus. NH4+-N and PO43--P removal efficiencies of 52.6 and 55.6%, and 67.0 and 20.4%, as well as NO3--N production efficiencies of 87.0 and 93.1% were reported in agitation and aeration photobioreactors, respectively. Aeration was not found to increase the nutrient removal efficiency of NH4+-N . Moreover, in the case of PO43--P , a negative impact was observed, where removal efficiencies decreased by a factor of 3.3 at higher aeration rates. To the best of our knowledge, this is the first report of the removal of nutrients by native Ecuadorian Chlorella sp., hence the results of this study would indicate that this native microalgal strain could be successfully incorporated in a potential treatment process for nutrient removal in Ecuador.


Assuntos
Chlorella , Microalgas , Biomassa , Equador , Nitrogênio , Nutrientes , Fósforo , Eliminação de Resíduos Líquidos , Águas Residuárias
13.
BMC Genomics ; 18(1): 406, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28545405

RESUMO

BACKGROUND: Miscanthus sinensis is a high yielding perennial grass species with great potential as a bioenergy feedstock. One of the challenges that currently impedes commercial cellulosic biofuel production is the technical difficulty to efficiently convert lignocellulosic biomass into biofuel. The development of feedstocks with better biomass quality will improve conversion efficiency and the sustainability of the value-chain. Progress in the genetic improvement of biomass quality may be substantially expedited by the development of genetic markers associated to quality traits, which can be used in a marker-assisted selection program. RESULTS: To this end, a mapping population was developed by crossing two parents of contrasting cell wall composition. The performance of 182 F1 offspring individuals along with the parents was evaluated in a field trial with a randomized block design with three replicates. Plants were phenotyped for cell wall composition and conversion efficiency characters in the second and third growth season after establishment. A new SNP-based genetic map for M. sinensis was built using a genotyping-by-sequencing (GBS) approach, which resulted in 464 short-sequence uniparental markers that formed 16 linkage groups in the male map and 17 linkage groups in the female map. A total of 86 QTLs for a variety of biomass quality characteristics were identified, 20 of which were detected in both growth seasons. Twenty QTLs were directly associated to different conversion efficiency characters. Marker sequences were aligned to the sorghum reference genome to facilitate cross-species comparisons. Analyses revealed that for some traits previously identified QTLs in sorghum occurred in homologous regions on the same chromosome. CONCLUSION: In this work we report for the first time the genetic mapping of cell wall composition and bioconversion traits in the bioenergy crop miscanthus. These results are a first step towards the development of marker-assisted selection programs in miscanthus to improve biomass quality and facilitate its use as feedstock for biofuel production.


Assuntos
Biocombustíveis , Biomassa , Parede Celular/metabolismo , Poaceae/citologia , Poaceae/metabolismo , Combinação de Medicamentos , Ligação Genética , Variação Genética , Genótipo , Lignina/metabolismo , Poaceae/genética , Pirantel/análogos & derivados , Locos de Características Quantitativas/genética , Especificidade da Espécie , Sintenia
14.
Biotechnol Biofuels ; 9: 63, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26981155

RESUMO

BACKGROUND: Despite the recognition that feedstock composition influences biomass conversion efficiency, limited information exists as to how bioenergy crops with reduced recalcitrance can improve the economics and sustainability of cellulosic fuel conversion platforms. We have compared the bioenergy potential-estimated as total glucose productivity per hectare (TGP)-of maize cultivars contrasting for cell wall digestibility across processing conditions of increasing thermochemical severity. In addition, exploratory environmental impact and economic modeling were used to assess whether the development of bioenergy feedstocks with improved cell wall digestibility can enhance the environmental performance and reduce the costs of biomass pretreatment and enzymatic conversion. RESULTS: Systematic genetic gains in cell wall degradability can lead to significant advances in the productivity (TGP) of cellulosic fuel biorefineries under low severity processing; only if gains in digestibility are not accompanied by substantial yield penalties. For a hypothetical maize genotype combining the best characteristics available in the evaluated cultivar panel, TGP under mild processing conditions (~3.7 t ha(-1)) matched the highest realizable yields possible at the highest processing severity. Under this scenario, both, the environmental impacts and processing costs for the pretreatment and enzymatic saccharification of maize stover were reduced by 15 %, given lower chemical and heat consumption. CONCLUSIONS: Genetic improvements in cell wall composition leading to superior cell wall digestibility can be advantageous for cellulosic fuel production, especially if "less severe" processing regimes are favored for further development. Exploratory results indicate potential cost and environmental impact reductions for the pretreatment and enzymatic saccharification of maize feedstocks exhibiting higher cell wall degradability. Conceptually, these results demonstrate that the advance of bioenergy cultivars with improved biomass degradability can enhance the performance of currently available biomass-to-ethanol conversion systems.

15.
J Exp Bot ; 66(14): 4351-65, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25908240

RESUMO

The production of bioenergy from grasses has been developing quickly during the last decade, with Miscanthus being among the most important choices for production of bioethanol. However, one of the key barriers to producing bioethanol is the lack of information about cell wall structure. Cell walls are thought to display compositional differences that lead to emergence of a very high level of complexity, resulting in great diversity in cell wall architectures. In this work, a set of different techniques was used to access the complexity of cell walls of different genotypes of Miscanthus sinensis in order to understand how they interfere with saccharification efficiency. Three genotypes of M. sinensis displaying different patterns of correlation between lignin content and saccharification efficiency were subjected to cell wall analysis by quantitative/qualitative analytical techniques such as monosaccharide composition, oligosaccharide profiling, and glycome profiling. When saccharification efficiency was correlated negatively with lignin, the structural features of arabinoxylan and xyloglucan were found to contribute positively to hydrolysis. In the absence of such correlation, different types of pectins, and some mannans contributed to saccharification efficiency. Different genotypes of M. sinensis were shown to display distinct interactions among their cell wall components, which seem to influence cell wall hydrolysis.


Assuntos
Configuração de Carboidratos , Parede Celular/metabolismo , Poaceae/metabolismo , Genótipo , Poaceae/genética
16.
Front Plant Sci ; 4: 107, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23653628

RESUMO

With the advent of biorefinery technologies enabling plant biomass to be processed into biofuel, many researchers set out to study and improve candidate biomass crops. Many of these candidates are C4 grasses, characterized by a high productivity and resource use efficiency. In this review the potential of five C4 grasses as lignocellulosic feedstock for biofuel production is discussed. These include three important field crops-maize, sugarcane and sorghum-and two undomesticated perennial energy grasses-miscanthus and switchgrass. Although all these grasses are high yielding, they produce different products. While miscanthus and switchgrass are exploited exclusively for lignocellulosic biomass, maize, sorghum, and sugarcane are dual-purpose crops. It is unlikely that all the prerequisites for the sustainable and economic production of biomass for a global cellulosic biofuel industry will be fulfilled by a single crop. High and stable yields of lignocellulose are required in diverse environments worldwide, to sustain a year-round production of biofuel. A high resource use efficiency is indispensable to allow cultivation with minimal inputs of nutrients and water and the exploitation of marginal soils for biomass production. Finally, the lignocellulose composition of the feedstock should be optimized to allow its efficient conversion into biofuel and other by-products. Breeding for these objectives should encompass diverse crops, to meet the demands of local biorefineries and provide adaptability to different environments. Collectively, these C4 grasses are likely to play a central role in the supply of lignocellulose for the cellulosic ethanol industry. Moreover, as these species are evolutionary closely related, advances in each of these crops will expedite improvements in the other crops. This review aims to provide an overview of their potential, prospects and research needs as lignocellulose feedstocks for the commercial production of biofuel.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...