Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Malar J ; 14: 122, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25889340

RESUMO

BACKGROUND: Current available malaria diagnostic methods each have some limitations to meet the need for real-time and large-scale screening of asymptomatic and low density malaria infection at community level. It was proposed that malaria parasite-specific low molecular-weight metabolites could be used as biomarkers for the development of a malaria diagnostic tool aimed to address this diagnostic challenge. In this study, high resolution metabolomics (HRM) was employed to identify malaria parasite-specific metabolites in Plasmodium falciparum in vitro culture samples. METHODS: Supernatants were collected at 12 hours interval from 3% haematocrit in vitro 48-hour time-course asynchronized culture system of P. falciparum. Liquid chromatography coupled with high resolution mass spectrometry was applied to discover potential parasite-specific metabolites in the cell culture supernatant. A metabolome-wide association study was performed to extract metabolites using Manhattan plot with false discovery rate (FDR) and hierarchical cluster analysis. The significant metabolites based on FDR cutoff were annotated using Metlin database. Standard curves were created using corresponding chemical compounds to accurately quantify potential Plasmodium-specific metabolites in culture supernatants. RESULTS: The number of significant metabolite features was 1025 in the supernatant of the Plasmodium infected culture based on Manhattan plot with FDR q=0.05. A two way hierarchical cluster analysis showed a clear segregation of the metabolic profile of parasite infected supernatant from non-infected supernatant at four time points during the 48 hour culture. Among the 1025 annotated metabolites, the intensities of four molecules were significantly increased with culture time suggesting a positive association between the quantity of these molecules and level of parasitaemia: i) 3-methylindole, a mosquito attractant, ii) succinylacetone, a haem biosynthesis inhibitor, iii) S-methyl-L-thiocitrulline, a nitric oxide synthase inhibitor, and iv) O-arachidonoyl glycidol, a fatty acid amide hydrolase inhibitor, The highest concentrations of 3-methylindole and succinylacetone were 178 ± 18.7 pmoles at 36 hours and 157±30.5 pmoles at 48 hours respectively in parasite infected supernatant. CONCLUSION: HRM with bioinformatics identified four potential parasite-specific metabolite biomarkers using in vitro culture supernatants. Further study in malaria infected human is needed to determine presence of the molecules and its relationship with parasite densities.


Assuntos
Eritrócitos/parasitologia , Malária Falciparum/metabolismo , Metabolômica , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Biomarcadores/urina , Cromatografia Líquida , Eritrócitos/metabolismo , Humanos , Malária Falciparum/parasitologia , Espectrometria de Massas , Metaboloma , Parasitemia/metabolismo
2.
Int J Parasitol ; 43(14): 1141-7, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24126186

RESUMO

The subtype IIaA15G2R1 at the 60 kDa glycoprotein (gp60) gene locus is the most dominant Cryptosporidium parvum infecting dairy cattle and humans in industrialised nations. The reasons for its high transmissibility are not clear, and it remains to be determined whether this subtype represents a homogeneous parasite population. In this study, we sequence-characterised 26 IIaA15G2R subtype specimens and 26 non-IIaA15G2R subtype specimens from the United States, Canada, United Kingdom and Spain at seven other known polymorphic loci, including CP47, CP56, DZ-HRGP, MSC6-5, MSC6-7, RPGR and ZPT. Extensive heterogeneity within IIaA15G2R1 and discordance in typing results between gp60 and other genetic markers were observed. Results of inter-locus and intra-ZPT linkage disequilibrium and recombination analyses indicated that the heterogeneity within IIaA15G2R1 and discordance in typing results among genetic loci were largely due to the occurrence of genetic recombination, mostly within the gp60 subtype IIaA15G2R1. Although there was no clear population diversion between IIaA15G2R and non-IIaA15G2R subtypes, results of STRUCTURE and FST analyses suggested the presence of at least two subpopulations; subpopulation 1 had an epidemic population structure and was widely distributed, whereas subpopulation 2 had a clonal population structure and consisted of geographically segregated multilocus subtypes. Genetic recombination between epidemic and geographically segregated C. parvum populations appeared to be a driving force in the emergence of a hyper-transmissible IIaA15G2R1 subtype. Genetic recombination was observed even between the zoonotic IIa subtype family and anthroponotic subtype family IIc at CP56, MSC6-7 and ZPT. Thus, the IIaA15G2R1 subtype at gp60 is likely a fitness marker for C. parvum and the wide spread of IIaA15G2R1 subtype around the world is probably independent of the sequence characteristics at other genetic loci.


Assuntos
Criptosporidiose/parasitologia , Criptosporidiose/veterinária , Cryptosporidium parvum/classificação , Cryptosporidium parvum/genética , Glicoproteínas/genética , Polimorfismo Genético , Proteínas de Protozoários/genética , Animais , Canadá , Bovinos , Análise por Conglomerados , Cryptosporidium parvum/isolamento & purificação , Genótipo , Humanos , Dados de Sequência Molecular , Recombinação Genética , Análise de Sequência de DNA , Espanha , Reino Unido , Estados Unidos
3.
Appl Environ Microbiol ; 74(19): 6026-31, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18621872

RESUMO

To provide information on the transmission dynamics of cryptosporidial infections in domestic small ruminants and the potential role of sheep and goats as a source for human cryptosporidiosis, Cryptosporidium-positive isolates from 137 diarrheic lambs and 17 goat kids younger than 21 days of age were examined by using genotyping and subtyping techniques. Fecal specimens were collected between 2004 and 2006 from 71 sheep and 7 goat farms distributed throughout Aragón (northeastern Spain). Cryptosporidium parvum was the only species identified by restriction analyses of PCR products from small-subunit rRNA genes from all 154 microscopy-positive isolates and the sequencing of a subset of 50 isolates. Sequence analyses of the glycoprotein (GP60) gene revealed extensive genetic diversity within the C. parvum strains in a limited geographical area, in which the isolates from lambs exhibited 11 subtypes in two subtype families (IId and IIa) and those from goat kids displayed four subtypes within the family IId. Most isolates (98%) belonged to the subtype family IId, whereas only three isolates belonged to the most widely distributed family, IIa. Three of the four most prevalent subtypes (IIdA17G1a, IIdA19G1, and IIdA18G1) were previously identified in humans, and five subtypes (IIdA14G1, IIdA15G1, IIdA24G1, IIdA25G1, and IIdA26G1) were novel subtypes. All IId subtypes were identical to each other in the nonrepeat region, except for subtypes IIdA17G1b and IIdA22G1, which differed by a single nucleotide polymorphism downstream of the trinucleotide repeats. These findings suggest that lambs and goat kids are an important reservoir of the zoonotic C. parvum subtype family IId for humans.


Assuntos
Criptosporidiose/veterinária , Cryptosporidium/classificação , Cryptosporidium/isolamento & purificação , Diarreia/veterinária , Doenças das Cabras/parasitologia , Doenças dos Ovinos/parasitologia , Animais , Criptosporidiose/parasitologia , Cryptosporidium/genética , DNA de Protozoário/genética , DNA Ribossômico/genética , Diarreia/parasitologia , Fezes/parasitologia , Genótipo , Cabras , Humanos , Epidemiologia Molecular , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Polimorfismo Genético , Polimorfismo de Fragmento de Restrição , Proteínas de Protozoários/genética , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Ovinos , Espanha
4.
Vet Parasitol ; 148(3-4): 231-5, 2007 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-17683866

RESUMO

A total of 142 stool specimens from pigs on 24 farms from the province of Zaragoza (northeastern Spain) were screened for Cryptosporidium spp. Samples were first analysed by routine techniques (formalin-ethyl acetate sedimentation method and modified Ziehl-Neelsen stain) selecting those microscopically positive for genetic characterization. Cryptosporidium species and genotypes were determined by a nested PCR-RFLP technique at the 18S ribosomal DNA locus and sequencing of the PCR-positive secondary products. Cryptosporidium oocysts were microscopically identified in the faeces of 32 pigs (22.5%) from 15 farms (62.5%). Infected animals included 23 weaned piglets (30.7%), 5 fattening pigs (11.9%) and 4 sows (16%). Diarrhoea was not detected in any of the infected pigs. The molecular characterization was successfully performed in 26 samples from 14 farms. Cryptosporidium suis was found in 10 specimens from 7 farms (nine weaned piglets and one sow) and the Cryptosporidium pig genotype II in 16 samples from 10 farms (13 weaned piglets and 3 fattening pigs). Both C. suis and the pig genotype II were concurrently detected on three farms.


Assuntos
Criptosporidiose/veterinária , Cryptosporidium/genética , Doenças dos Suínos/parasitologia , Animais , Sequência de Bases , Criptosporidiose/parasitologia , Cryptosporidium/isolamento & purificação , Fezes/parasitologia , Genótipo , Dados de Sequência Molecular , Oocistos , RNA Ribossômico 18S/genética , Espanha , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...