Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38932070

RESUMO

Ethylene propylene diene monomer (EPDM) is a synthetic rubber widely used in industry and commerce due to its high thermal and chemical resistance. Nanotechnology has enabled the incorporation of nanomaterials into polymeric matrixes that maintain their flexibility and conformation, allowing them to achieve properties previously unattainable, such as improved tensile and chemical resistance. In this work, we summarize the influence of different nanostructures on the mechanical, thermal, and electrical properties of EPDM-based materials to keep up with current research and support future research into synthetic rubber nanocomposites.

2.
Polymers (Basel) ; 15(20)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37896427

RESUMO

Nowadays, biocomposites represent a new generation of materials that are environmentally friendly, cost-effective, low-density, and not derived from petroleum. They have been widely used to protect the environment and generate new alternatives in the polymer industry. In this study, we incorporated untreated jute fibers (UJFs) and alkaline-treated jute fibers (TJFs) at 1-5 and 10 phr into TSR 10 natural rubber as reinforcement fillers. These composites were produced to be used in countersole shoes manufacturing. Untreated fibers were compared to those treated with 10% sodium hydroxide. The alkali treatment allowed the incorporation of fibers without compromising their mechanical properties. The TJF samples exhibited 8% less hardness, 70% more tensile strength, and the same flexibility compared to their pure rubber counterparts. Thanks to their properties and ergonomic appearance, the composites obtained here can be useful in many applications: construction materials (sound insulating boards, and flooring materials), the automotive industry (interior moldings), the footwear industry (shoe soles), and anti-static moldings. These new compounds can be employed in innovative processes to reduce their carbon footprint and negative impact on our planet. Using the Lorenz-Park equation, the loaded composites examined in this study exhibited values above 0.7, which means a competitive load-rubber interaction. Scanning electron microscopy (SEM) was used to investigate the morphology of the composites in detail.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...