Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 56(7): 5157-5166, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30519817

RESUMO

The canonical Wnt pathway is critical for both the development and adulthood survival and homeostatic maintenance of the midbrain dopaminergic (DA) neurons. Expanding evidence has demonstrated that genetic factors associated with familial Parkinson disease (PD) deregulate this important pathway, suggesting that a disturbed canonical Wnt pathway is likely involved in PD pathogenesis; yet, the specific role of this pathway in sporadic PD remains unclear. In this study, we aimed to determine the effects of specific inhibition of the canonical pathway by hemizygous knockout of ß-catenin, the obligatory component of the canonical Wnt pathway, on paraquat (PQ)-induced DA neuronal degeneration in the substantia nigra in vivo. We found that while hemizygous conditional knockout of ß-catenin in DA neurons did not cause any significant TH+ neuronal loss in the substantia nigra at basal level, it triggered elevated oxidative stress at basal level and further enhanced PQ-induced oxidative damage and loss of TH+ neurons in the substantia nigra and axonal termini in the striatum that manifested as exacerbated motor deficits. These data support the notion that reduced Wnt/ß-catenin signaling in sporadic PD likely contributes to DA neuronal loss through an enhanced oxidative stress-response pathway.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Haploinsuficiência/fisiologia , Paraquat/toxicidade , Transtornos Parkinsonianos/genética , beta Catenina/deficiência , beta Catenina/genética , Animais , Neurônios Dopaminérgicos/efeitos dos fármacos , Feminino , Haploinsuficiência/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo
3.
PLoS One ; 11(3): e0151615, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26982086

RESUMO

At autopsy, the time that has elapsed since the time of death is routinely documented and noted as the postmortem interval (PMI). The PMI of human tissue samples is a parameter often reported in research studies and comparable PMI is preferred when comparing different populations, i.e., disease versus control patients. In theory, a short PMI may alleviate non-experimental protein denaturation, enzyme activity, and other chemical changes such as the pH, which could affect protein and nucleic acid integrity. Previous studies have compared PMI en masse by looking at many different individual cases each with one unique PMI, which may be affected by individual variance. To overcome this obstacle, in this study human hippocampal segments from the same individuals were sampled at different time points after autopsy creating a series of PMIs for each case. Frozen and fixed tissue was then examined by Western blot, RT-PCR, and immunohistochemistry to evaluate the effect of extended PMI on proteins, nucleic acids, and tissue morphology. In our results, immunostaining profiles for most proteins remained unchanged even after PMI of over 50 h, yet by Western blot distinctive degradation patterns were observed in different protein species. Finally, RNA integrity was lower after extended PMI; however, RNA preservation was variable among cases suggesting antemortem factors may play a larger role than PMI in protein and nucleic acid integrity.


Assuntos
Encéfalo/patologia , Mudanças Depois da Morte , Adulto , Idoso , Autopsia , Encéfalo/metabolismo , Feminino , Humanos , Masculino , Proteínas do Tecido Nervoso/metabolismo , Fosforilação , Proteínas tau/metabolismo
4.
J Alzheimers Dis ; 43(1): 57-65, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25061053

RESUMO

Cell cycle re-entry in Alzheimer's disease (AD) has emerged as an important pathological mechanism in the progression of the disease. This appearance of cell cycle related proteins has been linked to tau pathology in AD, but the causal and temporal relationship between the two is not completely clear. In this study, we found that hyperphosphorylated retinoblastoma protein (ppRb), a key regulator for G1/S transition, is correlated with a late marker for hyperphosphorylation of tau but not with other early markers for tau alteration in the 3xTg-AD mouse model. However, in AD brains, ppRb can colocalize with both early and later markers for tau alterations, and can often be found singly in many degenerating neurons, indicating the distinct development of pathology between the 3xTg-AD mouse model and human AD patients. The conclusions of this study are two-fold. First, our findings clearly demonstrate the pathological link between the aberrant cell cycle re-entry and tau pathology. Second, the chronological pattern of cell cycle re-entry with tau pathology in the 3xTg-AD mouse is different compared to AD patients suggesting the distinct pathogenic mechanism between the animal AD model and human AD patients.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Neurônios/patologia , Neurônios/fisiologia , Idoso , Idoso de 80 Anos ou mais , Animais , Ciclo Celular/fisiologia , Modelos Animais de Doenças , Progressão da Doença , Humanos , Camundongos Transgênicos , Emaranhados Neurofibrilares/patologia , Emaranhados Neurofibrilares/fisiologia , Fosforilação , Proteína do Retinoblastoma/metabolismo , Proteínas tau/metabolismo
5.
J Neurochem ; 128(1): 162-72, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23895348

RESUMO

Leptin signaling has received considerable attention in the Alzheimer disease (AD) field. Within the past decade, the peptide hormone has been demonstrated to attenuate tau hyperphosphorylation in neuronal cells and to be modulated by amyloid-ß. Moreover, a role in neuroprotection and neurogenesis within the hippocampus has been shown in animal models. To further characterize the association between leptin signaling and vulnerable regions in AD, we assessed the profile of leptin and the leptin receptor in AD and control patients. We analyzed leptin levels in CSF, and the concentration and localization of leptin and leptin receptor in the hippocampus. Significant elevations in leptin levels in both CSF and hippocampal tissue of AD patients, compared with age-matched control cases, indicate a physiological up-regulation of leptin in AD. However, the level of leptin receptor mRNA decreased in AD brain and the leptin receptor protein was localized to neurofibrillary tangles, suggesting a severe discontinuity in the leptin signaling pathway. Collectively, our results suggest that leptin resistance in the hippocampus may play a role in the characteristic changes associated with the disease. These findings are the first to demonstrate such dysregulated leptin-signaling circuitry and provide novel insights into the possible role of aberrant leptin signaling in AD. In this study, increased leptin was found in CSF and hippocampus in Alzheimer disease indicating its physiological up-regulation, yet leptin receptor mRNA was decreased and leptin receptor protein was localized to neurofibrillary tangles, suggesting a discontinuity in the leptin signaling pathway. The lack of leptin signaling within degenerating neurons may represent a novel neuronal leptin resistance in Alzheimer disease.


Assuntos
Doença de Alzheimer/metabolismo , Leptina/fisiologia , Neurônios/metabolismo , Receptores para Leptina/metabolismo , Transdução de Sinais/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/patologia , Regulação para Baixo/fisiologia , Feminino , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Leptina/líquido cefalorraquidiano , Leptina/metabolismo , Masculino , Pessoa de Meia-Idade , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Neurônios/patologia , Ligação Proteica/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...