Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 15(1): 596-603, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33444504

RESUMO

Above a critical diameter, single- or few-walled carbon nanotubes spontaneously collapse as flattened carbon nanotubes. Raman spectra of isolated flattened and cylindrical carbon nanotubes have been recorded. The collapse provokes an intense and narrow D band, despite the absence of any lattice disorder. The curvature change near the edge cavities activates a D band, despite framework continuity. Theoretical calculations based on Placzek approximation fully corroborate this experimental finding. Usually used as a tool to quantify defect density in graphenic structures, the D band cannot be used as such in the presence of a graphene fold. This conclusion should serve as a basis to revisit materials comprising structural distortion where poor carbon organization was concluded on a Raman basis. Our finding also emphasizes the different visions of a defect between chemists and physicists, a possible source of confusion for researchers working in nanotechnologies.

2.
Nano Lett ; 20(8): 5929-5935, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32639741

RESUMO

The experimental identification of structural transitions in layered black phosphorus (BP) under mechanical stress is essential to extend its application in microelectromechanical (MEMS) devices under harsh conditions. High-pressure Raman spectroscopic analysis of BP flakes suggests a transition pressure at ∼4.2 GPa, where the BP's crystal structure progressively transforms from an orthorhombic to a rhombohedral symmetry (blue phosphorus, bP). The phase transition has been identified by observing a transition from blueshift to redshift of the in-plane characteristic Raman modes (B2g and Ag2) with increasing pressure. Recovery of the vibrational frequencies for all three characteristic Raman modes confirms the reversibility of the structural phase transition. First-principles calculations provide insight into the behavior of the Raman modes of BP under high pressure and reveal the mechanism responsible for the partial phase transition from BP to bP, corresponding to a metastable equilibrium state where both phases coexist.

3.
ACS Nano ; 12(10): 10310-10316, 2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30299926

RESUMO

When reducing the size of a material from bulk down to nanoscale, the enhanced surface-to-volume ratio and the presence of interfaces make the properties of nano-objects very sensitive not only to confinement effects but also to their local environment. In the optical domain, the latter dependence can be exploited to tune the plasmonic response of metal nanoparticles by controlling their surroundings, notably applying high pressures. To date, only a few optical absorption experiments have demonstrated this feasibility, on ensembles of metal nanoparticles in a diamond anvil cell. Here, we report a nontrivial combination between a spatial modulation spectroscopy microscope and an ultraflat diamond anvil cell, allowing us to quantitatively investigate the high-pressure optical extinction spectrum of an individual nano-object. A large tuning of the surface plasmon resonance of a gold nanobipyramid is experimentally demonstrated up to 10 GPa, in quantitative agreement with finite-element simulations and an analytical model disentangling the impact of metal and local environment dielectric modifications. High-pressure optical characterizations of single nanoparticles allow for the accurate investigation and modeling of size, strain, and environment effects on physical properties of nano-objects and also enable fine-tuned applications in nanocomposites, nanoelectromechanical systems, or nanosensing devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...