Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
iScience ; 23(2): 100826, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31981925

RESUMO

Neurotransmission defects and motoneuron degeneration are hallmarks of spinal muscular atrophy, a monogenetic disease caused by the deficiency of the SMN protein. In the present study, we show that systemic application of R-Roscovitine, a Cav2.1/Cav2.2 channel modifier and a cyclin-dependent kinase 5 (Cdk-5) inhibitor, significantly improved survival of SMA mice. In addition, R-Roscovitine increased Cav2.1 channel density and sizes of the motor endplates. In vitro, R-Roscovitine restored axon lengths and growth cone sizes of Smn-deficient motoneurons corresponding to enhanced spontaneous Ca2+ influx and elevated Cav2.2 channel cluster formations independent of its capability to inhibit Cdk-5. Acute application of R-Roscovitine at the neuromuscular junction significantly increased evoked neurotransmitter release, increased the frequency of spontaneous miniature potentials, and lowered the activation threshold of silent terminals. These data indicate that R-Roscovitine improves Ca2+ signaling and Ca2+ homeostasis in Smn-deficient motoneurons, which is generally crucial for motoneuron differentiation, maturation, and function.

3.
Am J Hum Genet ; 105(1): 221-230, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31230718

RESUMO

Spinal muscular atrophy (SMA) is a neuromuscular disease causing the most frequent genetic childhood lethality. Recently, nusinersen, an antisense oligonucleotide (ASO) that corrects SMN2 splicing and thereby increases full-length SMN protein, has been approved by the FDA and EMA for SMA therapy. However, the administration of nusinersen in severe and/or post-symptomatic SMA-affected individuals is insufficient to counteract the disease. Therefore, additional SMN-independent therapies are needed to support the function of motoneurons and neuromuscular junctions. We recently identified asymptomatic SMN1-deleted individuals who were protected against SMA by reduced expression of neurocalcin delta (NCALD). NCALD reduction is proven to be a protective modifier of SMA across species, including worm, zebrafish, and mice. Here, we identified Ncald-ASO3-out of 450 developed Ncald ASOs-as the most efficient and non-toxic ASO for the CNS, by applying a stepwise screening strategy in cortical neurons and adult and neonatal mice. In a randomized-blinded preclinical study, a single subcutaneous low-dose SMN-ASO and a single intracerebroventricular Ncald-ASO3 or control-ASO injection were presymptomatically administered in a severe SMA mouse model. NCALD reduction of >70% persisted for about 1 month. While low-dose SMN-ASO rescues multiorgan impairment, additional NCALD reduction significantly ameliorated SMA pathology including electrophysiological and histological properties of neuromuscular junctions and muscle at P21 and motoric deficits at 3 months. The present study shows the additional benefit of a combinatorial SMN-dependent and SMN-independent ASO-based therapy for SMA. This work illustrates how a modifying gene, identified in some asymptomatic individuals, helps to develop a therapy for all SMA-affected individuals.


Assuntos
Modelos Animais de Doenças , Regulação da Expressão Gênica , Atrofia Muscular Espinal/terapia , Neurocalcina/antagonistas & inibidores , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos/administração & dosagem , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Animais , Camundongos , Atrofia Muscular Espinal/genética , Neurocalcina/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética
4.
Front Mol Neurosci ; 12: 19, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30853885

RESUMO

Neurocalcin delta (NCALD) is a brain-enriched neuronal calcium sensor and its reduction acts protective against spinal muscular atrophy (SMA). However, the physiological function of NCALD and implications of NCALD reduction are still elusive. Here, we analyzed the ubiquitous Ncald knockout in homozygous (Ncald KO/KO) and heterozygous (Ncald KO/WT) mice to unravel the physiological role of NCALD in the brain and to study whether 50% NCALD reduction is a safe option for SMA therapy. We found that Ncald KO/KO but not Ncald KO/WT mice exhibit significant changes in the hippocampal morphology, likely due to impaired generation and migration of newborn neurons in the dentate gyrus (DG). To understand the mechanism behind, we studied the NCALD interactome and identified mitogen-activated protein kinase kinase kinase 10 (MAP3K10) as a novel NCALD interacting partner. MAP3K10 is an upstream activating kinase of c-Jun N-terminal kinase (JNK), which regulates adult neurogenesis. Strikingly, the JNK activation was significantly upregulated in the Ncald KO/KO brains. Contrary, neither adult neurogenesis nor JNK activation were altered by heterozygous Ncald deletion. Taken together, our study identifies a novel link between NCALD and adult neurogenesis in the hippocampus, possibly via a MAP3K10-JNK pathway and emphasizes the safety of using NCALD reduction as a therapeutic option for SMA.

5.
Brain ; 141(8): 2343-2361, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29961886

RESUMO

Autosomal recessive spinal muscular atrophy (SMA), the leading genetic cause of infant lethality, is caused by homozygous loss of the survival motor neuron 1 (SMN1) gene. SMA disease severity inversely correlates with the number of SMN2 copies, which in contrast to SMN1, mainly produce aberrantly spliced transcripts. Recently, the first SMA therapy based on antisense oligonucleotides correcting SMN2 splicing, namely SPINRAZATM, has been approved. Nevertheless, in type I SMA-affected individuals-representing 60% of SMA patients-the elevated SMN level may still be insufficient to restore motor neuron function lifelong. Plastin 3 (PLS3) and neurocalcin delta (NCALD) are two SMN-independent protective modifiers identified in humans and proved to be effective across various SMA animal models. Both PLS3 overexpression and NCALD downregulation protect against SMA by restoring impaired endocytosis; however, the exact mechanism of this protection is largely unknown. Here, we identified calcineurin-like EF-hand protein 1 (CHP1) as a novel PLS3 interacting protein using a yeast-two-hybrid screen. Co-immunoprecipitation and pull-down assays confirmed a direct interaction between CHP1 and PLS3. Although CHP1 is ubiquitously present, it is particularly abundant in the central nervous system and at SMA-relevant sites including motor neuron growth cones and neuromuscular junctions. Strikingly, we found elevated CHP1 levels in SMA mice. Congruently, CHP1 downregulation restored impaired axonal growth in Smn-depleted NSC34 motor neuron-like cells, SMA zebrafish and primary murine SMA motor neurons. Most importantly, subcutaneous injection of low-dose SMN antisense oligonucleotide in pre-symptomatic mice doubled the survival rate of severely-affected SMA mice, while additional CHP1 reduction by genetic modification prolonged survival further by 1.6-fold. Moreover, CHP1 reduction further ameliorated SMA disease hallmarks including electrophysiological defects, smaller neuromuscular junction size, impaired maturity of neuromuscular junctions and smaller muscle fibre size compared to low-dose SMN antisense oligonucleotide alone. In NSC34 cells, Chp1 knockdown tripled macropinocytosis whereas clathrin-mediated endocytosis remained unaffected. Importantly, Chp1 knockdown restored macropinocytosis in Smn-depleted cells by elevating calcineurin phosphatase activity. CHP1 is an inhibitor of calcineurin, which collectively dephosphorylates proteins involved in endocytosis, and is therefore crucial in synaptic vesicle endocytosis. Indeed, we found marked hyperphosphorylation of dynamin 1 in SMA motor neurons, which was restored to control level by the heterozygous Chp1 mutant allele. Taken together, we show that CHP1 is a novel SMA modifier that directly interacts with PLS3, and that CHP1 reduction ameliorates SMA pathology by counteracting impaired endocytosis. Most importantly, we demonstrate that CHP1 reduction is a promising SMN-independent therapeutic target for a combinatorial SMA therapy.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Glicoproteínas de Membrana/fisiologia , Proteínas dos Microfilamentos/fisiologia , Atrofia Muscular Espinal/fisiopatologia , Animais , Atrofia/fisiopatologia , Calcineurina/metabolismo , Proteínas de Ligação ao Cálcio/fisiologia , Linhagem Celular , Modelos Animais de Doenças , Dinamina I/metabolismo , Endocitose/fisiologia , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Neurônios Motores/metabolismo , Junção Neuromuscular/metabolismo , Oligonucleotídeos Antissenso/farmacologia , Monoéster Fosfórico Hidrolases/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Peixe-Zebra
6.
Sci Rep ; 8(1): 10294, 2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-29967434

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

7.
Sci Rep ; 8(1): 7907, 2018 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29784949

RESUMO

Dysregulated miRNA expression and mutation of genes involved in miRNA biogenesis have been reported in motor neuron diseases including spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS). Therefore, identifying molecular mechanisms governing miRNA expression is important to understand these diseases. Here, we report that expression of DROSHA, which is a critical enzyme in the microprocessor complex and essential for miRNA biogenesis, is reduced in motor neurons from an SMA mouse model. We show that DROSHA is degraded by neuronal activity induced autophagy machinery, which is also dysregulated in SMA. Blocking neuronal activity or the autophagy-lysosome pathway restores DROSHA levels in SMA motor neurons. Moreover, reducing DROSHA levels enhances axonal growth. As impaired axonal growth is a well described phenotype of SMA motor neurons, these data suggest that DROSHA reduction by autophagy may mitigate the phenotype of SMA. In summary, these findings suggest that autophagy regulates RNA metabolism and neuronal growth via the DROSHA/miRNA pathway and this pathway is dysregulated in SMA.


Assuntos
Autofagia , MicroRNAs/genética , Neurônios Motores/patologia , Atrofia Muscular Espinal/patologia , Ribonuclease III/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/fisiologia , Proteína 2 de Sobrevivência do Neurônio Motor/fisiologia , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Fenótipo , Ribonuclease III/genética , Frações Subcelulares
8.
Neurol Genet ; 4(1): e209, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29379881

RESUMO

OBJECTIVE: To ascertain the genetic and functional basis of complex autosomal recessive cerebellar ataxia (ARCA) presented by 2 siblings of a consanguineous family characterized by motor neuropathy, cerebellar atrophy, spastic paraparesis, intellectual disability, and slow ocular saccades. METHODS: Combined whole-genome linkage analysis, whole-exome sequencing, and focused screening for identification of potential causative genes were performed. Assessment of the functional consequences of the mutation on protein function via subcellular fractionation, size-exclusion chromatography, and fluorescence microscopy were done. A zebrafish model, using Morpholinos, was generated to study the pathogenic effect of the mutation in vivo. RESULTS: We identified a biallelic 3-bp deletion (p.K19del) in CHP1 that cosegregates with the disease. Neither focused screening for CHP1 variants in 2 cohorts (ARCA: N = 319 and NeurOmics: N = 657) nor interrogating GeneMatcher yielded additional variants, thus revealing the scarcity of CHP1 mutations. We show that mutant CHP1 fails to integrate into functional protein complexes and is prone to aggregation, thereby leading to diminished levels of soluble CHP1 and reduced membrane targeting of NHE1, a major Na+/H+ exchanger implicated in syndromic ataxia-deafness. Chp1 deficiency in zebrafish, resembling the affected individuals, led to movement defects, cerebellar hypoplasia, and motor axon abnormalities, which were ameliorated by coinjection with wild-type, but not mutant, human CHP1 messenger RNA. CONCLUSIONS: Collectively, our results identified CHP1 as a novel ataxia-causative gene in humans, further expanding the spectrum of ARCA-associated loci, and corroborated the crucial role of NHE1 within the pathogenesis of these disorders.

9.
Am J Hum Genet ; 100(2): 297-315, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28132687

RESUMO

Homozygous SMN1 loss causes spinal muscular atrophy (SMA), the most common lethal genetic childhood motor neuron disease. SMN1 encodes SMN, a ubiquitous housekeeping protein, which makes the primarily motor neuron-specific phenotype rather unexpected. SMA-affected individuals harbor low SMN expression from one to six SMN2 copies, which is insufficient to functionally compensate for SMN1 loss. However, rarely individuals with homozygous absence of SMN1 and only three to four SMN2 copies are fully asymptomatic, suggesting protection through genetic modifier(s). Previously, we identified plastin 3 (PLS3) overexpression as an SMA protective modifier in humans and showed that SMN deficit impairs endocytosis, which is rescued by elevated PLS3 levels. Here, we identify reduction of the neuronal calcium sensor Neurocalcin delta (NCALD) as a protective SMA modifier in five asymptomatic SMN1-deleted individuals carrying only four SMN2 copies. We demonstrate that NCALD is a Ca2+-dependent negative regulator of endocytosis, as NCALD knockdown improves endocytosis in SMA models and ameliorates pharmacologically induced endocytosis defects in zebrafish. Importantly, NCALD knockdown effectively ameliorates SMA-associated pathological defects across species, including worm, zebrafish, and mouse. In conclusion, our study identifies a previously unknown protective SMA modifier in humans, demonstrates modifier impact in three different SMA animal models, and suggests a potential combinatorial therapeutic strategy to efficiently treat SMA. Since both protective modifiers restore endocytosis, our results confirm that endocytosis is a major cellular mechanism perturbed in SMA and emphasize the power of protective modifiers for understanding disease mechanism and developing therapies.


Assuntos
Endocitose/genética , Atrofia Muscular Espinal/genética , Neurocalcina/metabolismo , Animais , Caenorhabditis elegans/genética , Linhagem Celular , Clonagem Molecular , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Loci Gênicos , Estudo de Associação Genômica Ampla , Homozigoto , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Motores/patologia , Atrofia Muscular Espinal/terapia , Neurocalcina/genética , Células PC12 , Linhagem , Ratos , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo , Transcriptoma , Peixe-Zebra/genética
10.
Am J Hum Genet ; 99(3): 647-665, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27499521

RESUMO

Homozygous loss of SMN1 causes spinal muscular atrophy (SMA), the most common and devastating childhood genetic motor-neuron disease. The copy gene SMN2 produces only ∼10% functional SMN protein, insufficient to counteract development of SMA. In contrast, the human genetic modifier plastin 3 (PLS3), an actin-binding and -bundling protein, fully protects against SMA in SMN1-deleted individuals carrying 3-4 SMN2 copies. Here, we demonstrate that the combinatorial effect of suboptimal SMN antisense oligonucleotide treatment and PLS3 overexpression-a situation resembling the human condition in asymptomatic SMN1-deleted individuals-rescues survival (from 14 to >250 days) and motoric abilities in a severe SMA mouse model. Because PLS3 knockout in yeast impairs endocytosis, we hypothesized that disturbed endocytosis might be a key cellular mechanism underlying impaired neurotransmission and neuromuscular junction maintenance in SMA. Indeed, SMN deficit dramatically reduced endocytosis, which was restored to normal levels by PLS3 overexpression. Upon low-frequency electro-stimulation, endocytotic FM1-43 (SynaptoGreen) uptake in the presynaptic terminal of neuromuscular junctions was restored to control levels in SMA-PLS3 mice. Moreover, proteomics and biochemical analysis revealed CORO1C, another F-actin binding protein, whose direct binding to PLS3 is dependent on calcium. Similar to PLS3 overexpression, CORO1C overexpression restored fluid-phase endocytosis in SMN-knockdown cells by elevating F-actin amounts and rescued the axonal truncation and branching phenotype in Smn-depleted zebrafish. Our findings emphasize the power of genetic modifiers to unravel the cellular pathomechanisms underlying SMA and the power of combinatorial therapy based on splice correction of SMN2 and endocytosis improvement to efficiently treat SMA.


Assuntos
Endocitose/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Actinas/metabolismo , Animais , Axônios/patologia , Cálcio/metabolismo , Proteínas de Transporte , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Junção Neuromuscular/metabolismo , Junção Neuromuscular/patologia , Oligonucleotídeos Antissenso , Fenótipo , Terminações Pré-Sinápticas/metabolismo , Compostos de Piridínio/metabolismo , Compostos de Amônio Quaternário/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Transmissão Sináptica/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
11.
Cell Mol Life Sci ; 73(10): 2089-104, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26573968

RESUMO

Spinal muscular atrophy (SMA) is a devastating motoneuron (MN) disorder caused by homozygous loss of SMN1. Rarely, SMN1-deleted individuals are fully asymptomatic despite carrying identical SMN2 copies as their SMA III-affected siblings suggesting protection by genetic modifiers other than SMN2. High plastin 3 (PLS3) expression has previously been found in lymphoblastoid cells but not in fibroblasts of asymptomatic compared to symptomatic siblings. To find out whether PLS3 is also upregulated in MNs of asymptomatic individuals and thus a convincing SMA protective modifier, we generated induced pluripotent stem cells (iPSCs) from fibroblasts of three asymptomatic and three SMA III-affected siblings from two families and compared these to iPSCs from a SMA I patient and control individuals. MNs were differentiated from iPSC-derived small molecule neural precursor cells (smNPCs). All four genotype classes showed similar capacity to differentiate into MNs at day 8. However, SMA I-derived MN survival was significantly decreased while SMA III- and asymptomatic-derived MN survival was moderately reduced compared to controls at day 27. SMN expression levels and concomitant gem numbers broadly matched SMN2 copy number distribution; SMA I presented the lowest levels, whereas SMA III and asymptomatic showed similar levels. In contrast, PLS3 was significantly upregulated in mixed MN cultures from asymptomatic individuals pinpointing a tissue-specific regulation. Evidence for strong PLS3 accumulation in shaft and rim of growth cones in MN cultures from asymptomatic individuals implies an important role in neuromuscular synapse formation and maintenance. These findings provide strong evidence that PLS3 is a genuine SMA protective modifier.


Assuntos
Glicoproteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Neurônios Motores/patologia , Atrofia Muscular Espinal/genética , Células-Tronco Neurais/citologia , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Regulação para Cima , Biópsia , Diferenciação Celular , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Deleção de Genes , Inativação Gênica , Vetores Genéticos , Genótipo , Humanos , Imuno-Histoquímica , Células-Tronco Pluripotentes Induzidas/citologia , Cariotipagem , Linfócitos/citologia , Masculino , Microscopia Confocal , Mutação , Linhagem , Fenótipo , RNA Interferente Pequeno/metabolismo , Pele/patologia
12.
Int J Mol Sci ; 14(6): 11424-37, 2013 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-23759991

RESUMO

Spinal muscular atrophy (SMA) is a neurodegenerative disease produced by low levels of Survival Motor Neuron (SMN) protein that affects alpha motoneurons in the spinal cord. Notch signaling is a cell-cell communication system well known as a master regulator of neural development, but also with important roles in the adult central nervous system. Aberrant Notch function is associated with several developmental neurological disorders; however, the potential implication of the Notch pathway in SMA pathogenesis has not been studied yet. We report here that SMN deficiency, induced in the astroglioma cell line U87MG after lentiviral transduction with a shSMN construct, was associated with an increase in the expression of the main components of Notch signaling pathway, namely its ligands, Jagged1 and Delta1, the Notch receptor and its active intracellular form (NICD). In the SMNΔ7 mouse model of SMA we also found increased astrocyte processes positive for Jagged1 and Delta1 in intimate contact with lumbar spinal cord motoneurons. In these motoneurons an increased Notch signaling was found, as denoted by increased NICD levels and reduced expression of the proneural gene neurogenin 3, whose transcription is negatively regulated by Notch. Together, these findings may be relevant to understand some pathologic attributes of SMA motoneurons.


Assuntos
Neurônios Motores/metabolismo , Neurônios Motores/patologia , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patologia , Receptores Notch/metabolismo , Transdução de Sinais , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular Tumoral , Gliose/metabolismo , Gliose/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína Jagged-1 , Proteínas de Membrana/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Proteínas Serrate-Jagged , Medula Espinal/metabolismo , Medula Espinal/patologia , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo
13.
Hum Mol Genet ; 22(7): 1328-47, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23263861

RESUMO

F-actin bundling plastin 3 (PLS3) is a fully protective modifier of the neuromuscular disease spinal muscular atrophy (SMA), the most common genetic cause of infant death. The generation of a conditional PLS3-over-expressing mouse and its breeding into an SMA background allowed us to decipher the exact biological mechanism underlying PLS3-mediated SMA protection. We show that PLS3 is a key regulator that restores main processes depending on actin dynamics in SMA motor neurons (MNs). MN soma size significantly increased and a higher number of afferent proprioceptive inputs were counted in SMAPLS3 compared with SMA mice. PLS3 increased presynaptic F-actin amount, rescued synaptic vesicle and active zones content, restored the organization of readily releasable pool of vesicles and increased the quantal content of the neuromuscular junctions (NMJs). Most remarkably, PLS3 over-expression led to a stabilization of axons which, in turn, resulted in a significant delay of axon pruning, counteracting poor axonal connectivity at SMA NMJs. These findings together with the observation of increased endplate and muscle fiber size upon MN-specific PLS3 over-expression suggest that PLS3 significantly improves neuromuscular transmission. Indeed, ubiquitous over-expression moderately improved survival and motor function in SMA mice. As PLS3 seems to act independently of Smn, PLS3 might be a potential therapeutic target not only in SMA but also in other MN diseases.


Assuntos
Glicoproteínas de Membrana/fisiologia , Proteínas dos Microfilamentos/fisiologia , Placa Motora/fisiopatologia , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/patologia , Actinas/metabolismo , Animais , Potencial Evocado Motor , Expressão Gênica , Humanos , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência , Placa Motora/metabolismo , Placa Motora/patologia , Neurônios Motores/patologia , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/fisiopatologia , Fenótipo , Propriocepção , Transporte Proteico , Receptores Colinérgicos/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Sinapses/metabolismo , Vesículas Sinápticas/metabolismo
14.
Mol Neurobiol ; 47(1): 209-19, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22992975

RESUMO

Virtually all functions of the nervous system rely upon synapses, the sites of communication between neurons and between neurons and other cells. Synapses are complex structures, each one comprising hundreds of different types of molecules working in concert. They are organized by adhesive and scaffolding molecules that align presynaptic vesicular release sites, namely, active zones, with postsynaptic neurotransmitter receptors, thereby allowing rapid and reliable intercellular communication. Most synapses are relatively small, and acting alone exerts little effect on their postsynaptic partners. Some, however, are much larger and stronger, reliably driving the postsynaptic cell to its action potential threshold, acting essentially as electrical relays of excitation. These large synapses are among the best understood, and two of these are the subject of this review, namely, the vertebrate neuromuscular junction and the calyx of Held synapse in the mammalian auditory pathway of the brain stem. Both synapses undergo through a complex and well-coordinated maturation process, during which time the molecular elements and the biophysical properties of the secretory machinery are continuously adjusted to the synapse size and to the functional requirements. We here review the morphological and functional changes occurring during postnatal maturation, noting particular similarities and differences between these two large synapses.


Assuntos
Sinapses/fisiologia , Sinapses/ultraestrutura , Envelhecimento/fisiologia , Animais , Cálcio/metabolismo , Endocitose , Exocitose , Humanos
15.
Dev Neurobiol ; 72(1): 126-33, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21567981

RESUMO

Proximal spinal muscular atrophy, the most frequent genetic cause of childhood lethality, is caused by homozygous loss or mutation of the SMN1 gene on human chromosome 5, which codes for the survival motor neuron (SMN) protein. SMN plays a role in the assembly of small nuclear ribonucleoproteins and, additionally, in synaptic function. SMN deficiency produces defects in motor neuron ß-actin mRNA axonal transport, neurofilament dynamics, neurotransmitter release, and synapse maturation. The underlying molecular mechanisms and, in particular, the role of the cytoskeleton on the pathogenesis of this disease are starting to be revealed.


Assuntos
Neurônios Motores/patologia , Atrofia Muscular Espinal/patologia , Sinapses/patologia , Actinas/genética , Animais , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Modelos Animais de Doenças , Humanos , Atrofia Muscular Espinal/genética , RNA Mensageiro/metabolismo , Proteínas do Complexo SMN/deficiência , Proteínas do Complexo SMN/metabolismo , Sinapses/metabolismo
16.
PLoS One ; 6(10): e26164, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22022549

RESUMO

Low levels of the Survival Motor Neuron (SMN) protein produce Spinal Muscular Atrophy (SMA), a severe monogenetic disease in infants characterized by muscle weakness and impaired synaptic transmission. We report here severe structural and functional alterations in the organization of the organelles and the cytoskeleton of motor nerve terminals in a mouse model of SMA. The decrease in SMN levels resulted in the clustering of synaptic vesicles (SVs) and Active Zones (AZs), reduction in the size of the readily releasable pool (RRP), and the recycling pool (RP) of synaptic vesicles, a decrease in active mitochondria and limiting of neurofilament and microtubule maturation. We propose that SMN is essential for the normal postnatal maturation of motor nerve terminals and that SMN deficiency disrupts the presynaptic organization leading to neurodegeneration.


Assuntos
Microtúbulos/metabolismo , Neurônios Motores/metabolismo , Terminações Nervosas/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Vesículas Sinápticas/metabolismo , Actinas/metabolismo , Animais , Animais Recém-Nascidos , Análise por Conglomerados , Camundongos , Microtúbulos/patologia , Mitocôndrias/metabolismo , Neurônios Motores/patologia , Atrofia Muscular Espinal/metabolismo , Terminações Nervosas/patologia , Vesículas Sinápticas/patologia
17.
J Neurosci ; 30(3): 849-57, 2010 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-20089893

RESUMO

Low levels of survival motor neuron (SMN) protein result in spinal muscular atrophy (SMA), a severe genetic disease characterized by motor impairment and premature lethality. Although SMN is a ubiquitous protein, motor neurons are much more vulnerable to low levels of SMN than other cells. To gain insight into the pathogenesis of SMA, we have compared synaptic function of motor terminals in wild-type and severe SMA mice at different ages and in two proximal muscles. Our results show that mutant muscle fibers fire normal action potentials and that multi-innervated terminals are functional. By studying the characteristics of the three main components of synaptic transmission in nerve terminals (spontaneous, evoked, and asynchronous release), we found that the kinetics of the postsynaptic potentials are slowed and evoked neurotransmitter release is decreased by approximately 55%. In addition, asynchronous release is increased approximately 300%, indicating an anomalous augmentation of intraterminal bulk Ca(2+) during repetitive stimulation. Together, these results show that the reduction of SMN affects synaptic maturation, evoked release, and regulation of intraterminal Ca(2+) levels.


Assuntos
Cálcio/metabolismo , Líquido Extracelular/metabolismo , Homeostase , Atrofia Muscular Espinal/patologia , Terminações Pré-Sinápticas/metabolismo , Potenciais de Ação/fisiologia , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Estimulação Elétrica/métodos , Homeostase/genética , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Músculo Esquelético/fisiopatologia , Atrofia Muscular Espinal/genética , Mutação/genética , Junção Neuromuscular/metabolismo , Junção Neuromuscular/patologia , Junção Neuromuscular/fisiopatologia , Neurotransmissores/metabolismo , Terminações Pré-Sinápticas/patologia , Tempo de Reação , Proteína 1 de Sobrevivência do Neurônio Motor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...