Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 11(4)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37189786

RESUMO

Estetrol (E4), a natural estrogen produced by the human fetal liver, is actively studied for menopause and breast cancer treatment. It has low side effects and preferential estrogen receptor alpha (ERα) affinity. There are no data about its effects on endometriosis, a common gynecological disease affecting 6-10% of cycling women, generating painful pelvic lesions and infertility. Current combined hormone treatment (progestins and estrogens) is safe and efficient; nevertheless, one-third of patients develop progesterone (P4) resistance and recurrence by reducing P4 receptors (PRs) levels. We aimed to compare E4 and 17ß-estradiol (E2) effects using two human endometriotic cell lines (epithelial 11Z and stromal Hs832 cells) and primary cultures from endometriotic patients. We evaluated cell growth (MTS), migration (wound assay), hormone receptors levels (Western blot), and P4 response by PCR array. Compared to E2, E4 did not affect cell growth or migration but increased estrogen receptor alpha (ERα) and PRs, and reduced ERß. Finally, the incubation with E4 improved the P4 gene response. In conclusion, E4 increased PRs levels and genetic response without inducing cell growth or migration. These results suggest that E4 might be useful for endometriosis treatment avoiding P4 resistance; however, evaluating its response in more complex models is required.

2.
Cancers (Basel) ; 14(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36230673

RESUMO

The survival of patients with solid tumors, such as prostate cancer (PCa), has been limited and fleeting with anti-angiogenic therapies. It was previously thought that the mechanism by which the vasculature regulates tumor growth was driven by a passive movement of oxygen and nutrients to the tumor tissue. However, previous evidence suggests that endothelial cells have an alternative role in changing the behavior of tumor cells and contributing to cancer progression. Determining the impact of molecular signals/growth factors released by endothelial cells (ECs) on established PCa cell lines in vitro and in vivo could help to explain the mechanism by which ECs regulate tumor growth. Using cell-conditioned media collected from HUVEC (HUVEC-CM), our data show the stimulated proliferation of all the PCa cell lines tested. However, in more aggressive PCa cell lines, HUVEC-CM selectively promoted migration and invasion in vitro and in vivo. Using a PCa-cell-line-derived xenograft model co-injected with HUVEC or preincubated with HUVEC-CM, our results are consistent with the in vitro data, showing enhanced tumor growth, increased tumor microvasculature and promoted metastasis. Gene set enrichment analyses from RNA-Seq gene expression profiles showed that HUVEC-CM induced a differential effect on gene expression when comparing low versus highly aggressive PCa cell lines, demonstrating epigenetic and migratory pathway enrichments in highly aggressive PCa cells. In summary, paracrine stimulation by HUVEC increased PCa cell proliferation and tumor growth and selectively promoted migration and metastatic potential in more aggressive PCa cell lines.

3.
Cancer Res ; 81(11): 2824-2832, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33762358

RESUMO

Clinical localization of primary tumors and sites of metastasis by PET is based on the enhanced cellular uptake of 2-deoxy-2-[18F]-fluoro-D-glucose (FDG). In prostate cancer, however, PET-FDG imaging has shown limited clinical applicability, suggesting that prostate cancer cells may utilize hexoses other than glucose, such as fructose, as the preferred energy source. Our previous studies suggested that prostate cancer cells overexpress fructose transporters, but not glucose transporters, compared with benign cells. Here, we focused on validating the functional expression of fructose transporters and determining whether fructose can modulate the biology of prostate cancer cells in vitro and in vivo. Fructose transporters, Glut5 and Glut9, were significantly upregulated in clinical specimens of prostate cancer when compared with their benign counterparts. Fructose levels in the serum of patients with prostate cancer were significantly higher than healthy subjects. Functional expression of fructose transporters was confirmed in prostate cancer cell lines. A detailed kinetic characterization indicated that Glut5 represents the main functional contributor in mediating fructose transport in prostate cancer cells. Fructose stimulated proliferation and invasion of prostate cancer cells in vitro. In addition, dietary fructose increased the growth of prostate cancer cell line-derived xenograft tumors and promoted prostate cancer cell proliferation in patient-derived xenografts. Gene set enrichment analysis confirmed that fructose stimulation enriched for proliferation-related pathways in prostate cancer cells. These results demonstrate that fructose promotes prostate cancer cell growth and aggressiveness in vitro and in vivo and may represent an alternative energy source for prostate cancer cells. SIGNIFICANCE: This study identifies increased expression of fructose transporters in prostate cancer and demonstrates a role for fructose as a key metabolic substrate supporting prostate cancer cells, revealing potential therapeutic targets and biomarkers.


Assuntos
Biomarcadores Tumorais/metabolismo , Dieta/efeitos adversos , Frutose/farmacologia , Regulação Neoplásica da Expressão Gênica , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Transportador de Glucose Tipo 5/metabolismo , Neoplasias da Próstata/patologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Ciclo Celular , Movimento Celular , Proliferação de Células , Proteínas Facilitadoras de Transporte de Glucose/genética , Transportador de Glucose Tipo 5/genética , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias da Próstata/induzido quimicamente , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Prostate Cancer Prostatic Dis ; 22(1): 49-58, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30104655

RESUMO

Activation of glucose transporter-1 (Glut-1) gene expression is a molecular feature of cancer cells that increases glucose uptake and metabolism. Increased glucose uptake is the basis for the clinical localization of primary tumors using positron emission tomography (PET) and 2-deoxy-2-[18F]-fluoro-D-glucose (FDG) as a radiotracer. However, previous studies have demonstrated that a considerable number of cancers, which include prostate cancer (CaP), express low to undetectable levels of Glut-1 and that FDG-PET has limited clinical applicability in CaP. This observation could be explained by a low metabolic activity of CaP cells that may be overcome using different hexoses, such as fructose, as the preferred energy source. However, these hypotheses have not been examined critically in CaP. This review article summarizes what is currently known about transport and metabolism of hexoses, and more specifically fructose, in CaP and provides experimental evidences indicating that CaP cells may have increased capacity to transport and metabolize fructose in vitro and in vivo. Moreover, this review highlights recent findings that allow better understanding of how metabolism of fructose may regulate cancer cell proliferation and how fructose uptake and metabolism, through the de novo lipogenesis pathway, may provide new opportunities for CaP early diagnosis, staging, and treatment.


Assuntos
Metabolismo dos Carboidratos , Frutose/metabolismo , Neoplasias da Próstata/metabolismo , Animais , Transporte Biológico , Biomarcadores , Metabolismo Energético , Expressão Gênica , Humanos , Masculino , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/terapia
5.
Angiogenesis ; 20(1): 25-38, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27679502

RESUMO

BACKGROUND: Sex-related differences in the role of androgen have been reported in cardiovascular diseases and angiogenesis. Moreover, androgen receptor (AR) has been causally involved in the homeostasis of human prostate endothelial cells. However, levels of expression, functionality and biological role of AR in male- and female-derived human endothelial cells (ECs) remain poorly characterized. The objectives of this work were (1) to characterize the functional expression of AR in male- and female-derived human umbilical vein endothelial cell (HUVEC), and (2) to specifically analyze the biological effects of DHT, and the role of AR on these effects, in male-derived HUVECs (mHUVECs). RESULTS: Immunohistochemical analyses of tissue microarrays from benign human tissues confirmed expression of AR in ECs from several androgen-regulated and non-androgen-regulated human organs. Functional expression of AR was validated in vitro in male- and female-derived HUVECs using quantitative RT-PCR, immunoblotting and AR-mediated transcriptional activity assays. Our results indicated that functional expression of AR in male- and female-derived HUVECs was heterogeneous, but not sex dependent. In parallel, we analyzed in depth the biological effects of DHT, and the role of AR on these effects, on proliferation, survival and tube formation capacity in mHUVECs. Our results indicated that DHT did not affect mHUVEC survival; however, DHT stimulated mHUVEC proliferation and suppressed mHUVEC tube formation capacity. While the effect of DHT on proliferation was mediated through AR, the effect of DHT on tube formation did not depend on the presence of a functional AR, but rather depended on the ability of mHUVECs to further metabolize DHT. CONCLUSIONS: (1) Heterogeneous expression of AR in male- and female-derived HUVEC could define the presence of functionally different subpopulations of ECs that may be affected differentially by androgens, which could explain, at least in part, the pleiotropic effects of androgen on vascular biology, and (2) DHT, and metabolites of DHT, generally thought to represent progressively more hydrophilic products along the path to elimination, may have differential roles in modulating the biology of human ECs through AR-dependent and AR-independent mechanisms, respectively.


Assuntos
Androgênios/farmacologia , Homeostase/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Receptores Androgênicos/metabolismo , Androstanóis/metabolismo , Androsterona/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Di-Hidrotestosterona/química , Di-Hidrotestosterona/farmacologia , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Masculino , Modelos Biológicos , Neovascularização Fisiológica/efeitos dos fármacos , Especificidade de Órgãos/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Androgênicos/genética
6.
PLoS One ; 10(5): e0125834, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25954972

RESUMO

Reprimo (RPRM), a downstream effector of p53-induced cell cycle arrest at G2/M, has been proposed as a putative tumor suppressor gene (TSG) and as a potential biomarker for non-invasive detection of gastric cancer (GC). The aim of this study was to evaluate the epigenetic silencing of RPRM gene by promoter methylation and its tumor suppressor function in GC cell lines. Furthermore, clinical significance of RPRM protein product and its association with p53/p73 tumor suppressor protein family was explored. Epigenetic silencing of RPRM gene by promoter methylation was evaluated in four GC cell lines. Protein expression of RPRM was evaluated in 20 tumor and non-tumor matched cases. The clinical significance of RPRM association with p53/p73 tumor suppressor protein family was assessed in 114 GC cases. Tumor suppressor function was examined through functional assays. RPRM gene expression was negatively correlated with promoter methylation (Spearman rank r = -1; p = 0.042). RPRM overexpression inhibited colony formation and anchorage-independent growth. In clinical samples, RPRM gene protein expression was detected in 75% (15/20) of non-tumor adjacent mucosa, but only in 25% (5/20) of gastric tumor tissues (p = 0.001). Clinicopathological correlations of loss of RPRM expression were significantly associated with invasive stage of GC (stage I to II-IV, p = 0.02) and a positive association between RPRM and p73 gene protein product expression was found (p<0.0001 and kappa value = 0.363). In conclusion, epigenetic silencing of RPRM gene by promoter methylation is associated with loss of RPRM expression. Functional assays suggest that RPRM behaves as a TSG. Loss of expression of RPRM gene protein product is associated with the invasive stage of GC. Positive association between RPRM and p73 expression suggest that other members of the p53 gene family may participate in the regulation of RPRM expression.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/metabolismo , Progressão da Doença , Glicoproteínas/genética , Proteínas Nucleares/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Metilação de DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Glicoproteínas/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Regiões Promotoras Genéticas , Proteína Tumoral p73 , Ensaio Tumoral de Célula-Tronco
7.
J Endocrinol ; 224(3): R131-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25563353

RESUMO

Androgen receptor (AR) is a ligand-inducible transcription factor, and a member of the steroid-thyroid-retinoid receptor superfamily, that mediates the biological effects of androgens in a wide range of physiological and pathological processes. AR expression was identified in vascular cells nearly 20 years ago, and recent research has shown that AR mediates a variety of actions of androgens in endothelial and vascular smooth muscle cells. In this mini-review, we review evidence indicating the importance of AR in human endothelial cell (HUVEC) homeostatic and pathogenic processes. Although a role for AR in the modulation of HUVEC biology is evident, the molecular mechanisms by which AR regulates HUVEC homeostasis and disease processes are not fully understood. Understanding these mechanisms could provide critical insights into the processes of pathogenesis of diseases ranging from cardiovascular disease to cancer that are major causes of human morbidity and mortality.


Assuntos
Células Endoteliais da Veia Umbilical Humana/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Células Progenitoras Endoteliais/fisiologia , Humanos , Neoplasias/irrigação sanguínea , Neoplasias/genética , Neovascularização Patológica/genética , Neovascularização Fisiológica/genética
8.
J Cancer Res Clin Oncol ; 140(5): 783-8, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24627192

RESUMO

PURPOSE: To study the association between the polymorphisms, rs1859962 and rs4430796, from the chromosomes 17q24 and 17q12, respectively, with the risk of prostate cancer (PCa) and its clinical characteristics in a Hispanic (Chilean) population. METHODS: This study included 33 controls and 167 patients diagnosed with PCa. The polymorphisms, rs1859962 and rs4430796, were analyzed on blood specimens using quantitative PCR. The genetic analysis of the qPCR data was performed using the SNPStats program. A comparison between the clinical characteristics of the prostate cancers from the patients and the presence of the different polymorphism genotypes detected in blood specimens obtained from these patients was performed using the IBM SPSS v20.0 software. RESULTS: We observed no association of the SNPs and the risk of developing PCa (OR 0.84, 95 % CI 0.30-2.38, p = 1.0 to rs1859962 and OR 1.94, 95 % CI 0.57-6.52, p = 0.28 to rs4430796), both sporadic and hereditary. However, patients carrying the genotype G/G from the polymorphism rs4430796 had significantly higher PSA levels than patients carrying the other genotypes (15.05 ng/ml to G/G, 10 and 8.11 ng/ml to genotypes A/G y A/A, respectively, p = 0.01). Furthermore, patients with the genotype G/G of rs4430796 had higher tumor volume than other genotypes (9.45 cc to G/G and 5.22 cc to A/G + A/A, p = 0.04). CONCLUSION: The polymorphism rs4430796 of the chromosome 17q12 appears to be a biomarker for cancer aggressiveness, increased PSA and tumor volume of PCa.


Assuntos
Biomarcadores Tumorais/genética , Cromossomos Humanos Par 17/genética , Estudos de Associação Genética , Polimorfismo de Nucleotídeo Único/genética , Neoplasias da Próstata/genética , Idoso , Alelos , Predisposição Genética para Doença , Hispânico ou Latino , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neoplasias da Próstata/patologia , Fatores de Risco
9.
J Cell Mol Med ; 18(1): 125-33, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24224612

RESUMO

To study the association between the polymorphisms Arg462Gln and Asp541Glu from the RNASEL gene (1q25), and the polymorphisms rs620861, rs1447295, rs6983267, rs7837328 from the chromosome 8q24 with the risk of presenting prostate cancer (PCa) and its clinical characteristics in a Hispanic (Chilean) population. The study was performed on 21 control patients and 83 patients diagnosed with PCa. Polymorphisms were analysed from blood samples through real-time PCR by using TaqMan probes, and the genetic analysis was performed with the SNPStats program. Also, a comparison was performed between clinical characteristics of PCa and the presence of the different polymorphism genotypes by using the Minitab software. There was a significant association between the genotype G/G from the polymorphism rs6983267 with an overall increased risk of PCa, in patients both with or without family history of PCa (OR = 4.47, 95% CI = 1.05-18.94, P = 0.034 and OR = 3.57, 95% CI = 0.96-13.35, P = 0.037, respectively). Regarding clinical parameters, patients carrying the genotype C/C from the polymorphism Asp541Glu had significantly higher prostate-specific antigen (PSA) levels than patients carrying the other genotypes (P = 0.034). Moreover, patients with the genotype G/G of rs6983267 had higher PSA levels (P = 0.024). The polymorphism rs6983267 from region 3 of the chromosome 8q24 appears to be a prominent risk factor for PCa and a biomarker for cancer aggressiveness in the group of patients who presented higher levels of PSA at the time of diagnosis.


Assuntos
Cromossomos Humanos Par 8/genética , Endorribonucleases/genética , Neoplasias da Próstata/genética , Idoso , Estudos de Casos e Controles , Chile , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Polimorfismo de Nucleotídeo Único , Neoplasias da Próstata/patologia , Risco , Análise de Sequência de DNA , Carga Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...