Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(4): e0401723, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38488280

RESUMO

Haemophilus and Aggregatibacter are two of the most common bacterial genera in the human oral cavity, encompassing both commensals and pathogens of substantial ecological and medical significance. In this study, we conducted a metapangenomic analysis of oral Haemophilus and Aggregatibacter species to uncover genomic diversity, phylogenetic relationships, and habitat specialization within the human oral cavity. Using three metrics-pangenomic gene content, phylogenomics, and average nucleotide identity (ANI)-we first identified distinct species and sub-species groups among these genera. Mapping of metagenomic reads then revealed clear patterns of habitat specialization, such as Aggregatibacter species predominantly in dental plaque, a distinctive Haemophilus parainfluenzae sub-species group on the tongue dorsum, and H. sp. HMT-036 predominantly in keratinized gingiva and buccal mucosa. In addition, we found that supragingival plaque samples contained predominantly only one out of the three taxa, H. parainfluenzae, Aggregatibacter aphrophilus, and A. sp. HMT-458, suggesting independent niches or a competitive relationship. Functional analyses revealed the presence of key metabolic genes, such as oxaloacetate decarboxylase, correlated with habitat specialization, suggesting metabolic versatility as a driving force. Additionally, heme synthesis distinguishes H. sp. HMT-036 from closely related Haemophilus haemolyticus, suggesting that the availability of micronutrients, particularly iron, was important in the evolutionary ecology of these species. Overall, our study exemplifies the power of metapangenomics to identify factors that may affect ecological interactions within microbial communities, including genomic diversity, habitat specialization, and metabolic versatility. IMPORTANCE: Understanding the microbial ecology of the mouth is essential for comprehending human physiology. This study employs metapangenomics to reveal that various Haemophilus and Aggregatibacter species exhibit distinct ecological preferences within the oral cavity of healthy individuals, thereby supporting the site-specialist hypothesis. Additionally, it was observed that the gene pool of different Haemophilus species correlates with their ecological niches. These findings shed light on the significance of key metabolic functions in shaping microbial distribution patterns and interspecies interactions in the oral ecosystem.


Assuntos
Ecossistema , Haemophilus , Humanos , Aggregatibacter/fisiologia , Filogenia , Haemophilus/genética , Boca
2.
J Oral Microbiol ; 15(1): 2225261, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37361319

RESUMO

Gemella species are core members of the human oral microbiome in healthy subjects and are regarded as commensals, although they can cause opportunistic infections. Our objective was to evaluate the site-specialization of Gemella species among various habitats within the mouth by combining pangenomics and metagenomics. With pangenomics, we identified genome relationships and categorized genes as core and accessory to each species. With metagenomics, we identified the primary oral habitat of individual genomes. Our results establish that the genomes of three species, G. haemolysans, G. sanguinis and G. morbillorum, are abundant and prevalent in human mouths at different oral sites: G. haemolysans on buccal mucosa and keratinized gingiva; G. sanguinis on tongue dorsum, throat, and tonsils; and G. morbillorum in dental plaque. The gene-level basis of site-specificity was investigated by identifying genes that were core to Gemella genomes at a specific oral site but absent from other Gemella genomes. The riboflavin biosynthesis pathway was present in G. haemolysans genomes associated with buccal mucosa but absent from the rest of the genomes. Overall, metapangenomics show that Gemella species have clear ecological preferences in the oral cavity of healthy humans and provides an approach to identifying gene-level drivers of site specificity.

3.
Microbiol Spectr ; 11(1): e0404222, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36695592

RESUMO

Veillonella species are abundant members of the human oral microbiome with multiple interspecies commensal relationships. Examining the distribution patterns of Veillonella species across the oral cavity is fundamental to understanding their oral ecology. In this study, we used a combination of pangenomic analysis and oral metagenomic information to clarify Veillonella taxonomy and to test the site specialist hypothesis for the Veillonella genus, which contends that most oral bacterial species are adapted to live at specific oral sites. Using isolate genome sequences combined with shotgun metagenomic sequence data, we showed that Veillonella species have clear, differential site specificity: Veillonella parvula showed strong preference for supra- and subgingival plaque, while closely related V. dispar, as well as more distantly related V. atypica, preferred the tongue dorsum, tonsils, throat, and hard palate. In addition, the provisionally named Veillonella sp. Human Microbial Taxon 780 showed strong site specificity for keratinized gingiva. Using comparative genomic analysis, we identified genes associated with thiamine biosynthesis and the reductive pentose phosphate cycle that may enable Veillonella species to occupy their respective habitats. IMPORTANCE Understanding the microbial ecology of the mouth is fundamental for understanding human physiology. In this study, metapangenomics demonstrated that different Veillonella species have clear ecological preferences in the oral cavity of healthy humans, validating the site specialist hypothesis. Furthermore, the gene pool of different Veillonella species was found to be reflective of their ecology, illuminating the potential role of vitamins and carbohydrates in determining Veillonella distribution patterns and interspecies interactions.


Assuntos
Microbiota , Veillonella , Humanos , Veillonella/genética , Boca/microbiologia , Língua/microbiologia , Tonsila Palatina
4.
Mol Oral Microbiol ; 37(6): 229-243, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36073311

RESUMO

A detailed understanding of where bacteria localize is necessary to advance microbial ecology and microbiome-based therapeutics. The site-specialist hypothesis predicts that most microbes in the human oral cavity have a primary habitat type within the mouth where they are most abundant. We asked whether this hypothesis accurately describes the distribution of the members of the genus Streptococcus, a clinically relevant taxon that dominates most oral sites. Prior analysis of 16S rRNA gene sequencing data indicated that some oral Streptococcus clades are site-specialists while others may be generalists. However, within complex microbial populations composed of numerous closely related species and strains, such as the oral streptococci, genome-scale analysis is necessary to provide the resolution to discriminate closely related taxa with distinct functional roles. Here, we assess whether individual species within this genus are specialists using publicly available genomic sequence data that provide species-level resolution. We chose a set of high-quality representative genomes for human oral Streptococcus species. Onto these genomes, we mapped shotgun metagenomic sequencing reads from supragingival plaque, tongue dorsum, and other sites in the oral cavity. We found that every abundant Streptococcus species in the healthy human oral cavity showed strong site-tropism and that even closely related species such as S. mitis, S. oralis, and S. infantis specialized in different sites. These findings indicate that closely related bacteria can have distinct habitat distributions in the absence of dispersal limitation and under similar environmental conditions and immune regimes. Substantial overlap between the core genes of these three species suggests that site-specialization is determined by subtle differences in genomic content.


Assuntos
Microbiota , Streptococcus , Humanos , RNA Ribossômico 16S/genética , Streptococcus/genética , Microbiota/genética , Metagenoma , Bactérias/genética , Boca/microbiologia , Tropismo , Filogenia
5.
Biomed Res Int ; 2015: 761501, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26557697

RESUMO

H. pylori infection is the most important environmental risk to develop gastric cancer, mainly through its virulence factor CagA. In vitro models of CagA function have demonstrated a phosphoprotein activity targeting multiple cellular signaling pathways, while cagA transgenic mice develop carcinomas of the gastrointestinal tract, supporting oncogenic functions. However, it is still not completely clear how CagA alters cellular processes associated with carcinogenic events. In this study, we evaluated the capacity of H. pylori CagA positive and negative strains to alter nontransformed MCF-10A glandular acini formation. We found that CagA positive strains inhibited lumen formation arguing for an evasion of apoptosis activity of central acini cells. In agreement, CagA positive strains induced a cell survival activity that correlated with phosphorylation of AKT and of proapoptotic proteins BIM and BAD. Anoikis is a specific type of apoptosis characterized by AKT and BIM activation and it is the mechanism responsible for lumen formation of MCF-10A acini in vitro and mammary glands in vivo. Anoikis resistance is also a common mechanism of invading tumor cells. Our data support that CagA positive strains signaling function targets the AKT and BIM signaling pathway and this could contribute to its oncogenic activity through anoikis evasion.


Assuntos
Antígenos de Bactérias/farmacologia , Apoptose/efeitos dos fármacos , Proteínas de Bactérias/farmacologia , Células Epiteliais/efeitos dos fármacos , Infecções por Helicobacter/microbiologia , Helicobacter pylori/patogenicidade , Modelos Biológicos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Acinares , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Linhagem Celular Tumoral , Células Epiteliais/citologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...