Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Sci Rep ; 13(1): 10057, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344543

RESUMO

In this report, we evaluated the effect of the pasteurization (P) process of mother's own milk (MOM) on the miRNA content of extracellular vesicles (EVs) and its impact on innate immune responses. Differences in size or particle number were not observed upon pasteurization of MOM (PMOM). However, significant differences were observed in the EV membrane marker CD63 and miRNA profiles. miRNA sequencing identified 33 differentially enriched miRNAs between MOMEV and PMOMEV. These changes correlated with significant decreases in the ability of PMOMEV to modulate IL-8 secretion in intestinal Caco2 cells where only MOMEV were able to decrease IL-8 secretion in presence of TNFα. While EVs from MOMEV and PMOMEV were both able to induce a tolerogenic M2-like phenotype in THP-1 macrophages, a significant decrease in the transcript levels of IL-10 and RNA sensing genes was observed with PMOMEV. Together, our data indicates that pasteurization of MOM impacts the integrity and functionality of MOMEV, decreasing its EVs-mediated immunomodulatory activity. This data provides biomarkers that may be utilized during the optimization of milk processing to preserve its bioactivity.


Assuntos
Vesículas Extracelulares , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/farmacologia , Leite Humano , Pasteurização , Células CACO-2 , Interleucina-8/genética , Interleucina-8/farmacologia , Vesículas Extracelulares/genética
2.
BMC Genomics ; 23(1): 495, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35804311

RESUMO

BACKGROUND: Shigella specie is a globally important intestinal pathogen disseminated all over the world. In this study we analyzed the genome and the proteomic component of two Shigella flexneri 2a clinical isolates, collected from pediatric patients with gastroenteritis of the Northwest region of Argentina (NWA) in two periods of time, with four years of difference. Our goal was to determine putative changes at molecular levels occurred during these four years, that could explain the presence of this Shigella`s serovar as the prevalent pathogen in the population under study. RESULTS: As previously reported, our findings support the idea of Shigella has a conserved "core" genome, since comparative studies of CI133 and CI172 genomes performed against 80 genomes obtained from the NCBI database, showed that there is a large number of genes shared among all of them. However, we observed that CI133 and CI172 harbors a small number of strain-specific genes, several of them present in mobile genetic elements, supporting the hypothesis that these isolates were established in the population by horizontal acquisition of genes. These differences were also observed at proteomic level, where it was possible to detect the presence of certain secreted proteins in a culture medium that simulates the host environment. CONCLUSION: Great similarities were observed between the CI133 and CI172 strains, confirming the high percentage of genes constituting the "core" genome of S. flexneri 2. However, numerous strain specific genes were also determined. The presence of the here identified molecular elements into other strain of our culture collation, is currently used to develop characteristic markers of local pathogens. In addition, the most outstanding result of this study was the first description of a S. flexneri 2 producing Colicin E, as one of the characteristics that allows S. flexneri 2 to persist in the microbial community. These findings could also contribute to clarify the mechanism and the evolution strategy used by this pathogen to specifically colonize, survive, and cause infection within the NWA population.


Assuntos
Disenteria Bacilar , Shigella , Argentina/epidemiologia , Criança , Genômica , Humanos , Lactente , Proteômica , Shigella flexneri/genética
3.
Front Nutr ; 9: 775014, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35284460

RESUMO

Background: Infants in the neonatal intensive care unit (NICU) often require feeding tubes (FT) for weeks to months. Because FTs are in near constant contact with human milk and/or formula, rapid and extensive bacterial growth is possible. Due to their immature immunologic and gastrointestinal (GI) systems, infants may be at significant health risk due to FT colonization. In adults, length of time FTs remain in place (dwell time) affects the degree of colonization and biofilm formation which is important in infants whose tubes remain in place up to 30 days. Objective: The purpose of this review was to describe and summarize the evidence regarding FT bacterial colonization in infants and identify gaps needing further investigation. Methods: Medline, CINAHL, and Embase databases were searched for clinical and/or laboratory-based observational and randomized controlled studies investigating the presence of bacteria in neonatal FTs. Results: This review of 10 studies found evidence that neonatal FTs may contain high quantities of potentially pathogenic and antibiotic resistant bacteria and longer dwell times may increase the bacterial load. Furthermore, evidence suggests FT colonization may be nosocomial in origin and contribute to adverse infant health. Feeding tubes are an unrecognized source of bacterial colonization which may increase morbidity in premature infants and thus the presence of bacteria in FTs is an important area of investigation in the nutritional care of vulnerable infants in the NICU. Implications: Further appropriately powered studies which are clinically based, use appropriate analyses, and control for potential covariates are necessary to make clinical recommendations.

4.
Front Nutr ; 8: 757256, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722616

RESUMO

Obesity is considered a primary contributing factor in the development of many diseases, including cancer, diabetes, and cardiovascular illnesses. Phytochemical-rich foods, associated to healthy gastrointestinal microbiota, have been shown to reduce obesity and associated comorbidities. In the present article, we describe the effects of the probiotic Lactobacillus johnsonii N6.2 and blueberry extracts (BB) on the gut microbiota and lipid profile of rats under a high-fat (HF) or low-calorie (LC) diet. L. johnsonii was found to increase the levels of long chain fatty acids (LCFA) in the serum of all animals under HF diet, while reduced LCFA concentrations were observed in the adipose tissue of animals under HF diet supplemented with BB extracts. All animals under HF diet also showed lower protein levels of SREBP1 and SCAP when treated with L. johnsonii. The gut microbiota diversity, ß-diversity was significantly changed by L. johnsonii in the presence of BB. A significant reduction in α-diversity was observed in the ileum of animals under HF diet supplemented with L. johnsonii and BB, while increased α-diversity was observed in the ilium of animals under LC diet supplemented with L. johnsonii or BB. In summary, L. johnsonii and BB supplementation induced significant changes in gut microbiota diversity and lipid metabolism. The phospholipids pool was the lipidome component directly affected by the interventions. The ileum and colon microbiota showed clear differences depending on the diet and the treatments examined.

5.
Front Microbiol ; 12: 656889, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33936012

RESUMO

Feeding preterm infants mother's own milk (MOM) lowers rates of sepsis, decreases necrotizing enterocolitis, and shortens hospital stay. In the absence of freshly expressed MOM, frozen MOM (FMOM) is provided. When MOM is unavailable, preterm infants are often fed pasteurized donor human milk (DHM), rendering it devoid of beneficial bacteria. We have previously reported that when MOM is inoculated into DHM to restore the live microbiota [restored milk (RM)], a similar microbial diversity to MOM can be achieved. Yet, it is unknown if a similar diversity to MOM can be obtained when FMOM is inoculated into DHM. The goal of this study was to determine whether a similar microbial composition to MOM could be obtained when FMOM is used to personalize DHM. To this end, a fresh sample of MOM was obtained and divided into fresh and frozen fractions. MOM and FMOM were inoculated into DHM at different dilutions: MOM/FMOM 10% (RM/FRM10) and MOM/FMOM 30% (RM/FRM30) and incubated at 37°C. At different timepoints, culture-dependent and culture-independent techniques were performed. Similar microbiota expansion and alpha diversity were observed in MOM, RM10, and RM30 whether fresh or frozen milk was used as the inoculum. To evaluate if microbial expansion would result in an abnormal activation on the innate immune system, Caco-2 epithelial cells were exposed to RM/FRM to compare interleukin 8 levels with Caco-2 cells exposed to MOM or DHM. It was found that RM samples did not elicit a significant increase in IL-8 levels when compared to MOM or FMOM. These results suggest that FMOM can be used to inoculate DHM if fresh MOM is unavailable or limited in supply, allowing both fresh MOM and FMOM to be viable options in a microbial restoration strategy.

6.
Molecules ; 25(24)2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302441

RESUMO

Human milk could be considered an active and complex mixture of beneficial bacteria and bioactive compounds. Since pasteurization drastically reduces the microbial content, we recently demonstrated that pasteurized donor human milk (DHM) could be inoculated with different percentages (10% and 30%) of mother's own milk (MOM) to restore the unique live microbiota, resulting in personalized milk (RM10 and RM30, respectively). Pasteurization affects not only the survival of the microbiota but also the concentration of proteins and metabolites, in this study, we performed a comparative metabolomic analysis of the RM10, RM30, MOM and DHM samples to evaluate the impact of microbial restoration on metabolite profiles, where metabolite profiles clustered into four well-defined groups. Comparative analyses of DHM and MOM metabolomes determined that over one thousand features were significantly different. In addition, significant changes in the metabolite concentrations were observed in MOM and RM30 samples after four hours of incubation, while the concentration of metabolites in DHM remained constant, indicating that these changes are related to the microbial expansion. In summary, our analyses indicate that the metabolite profiles of DHM are significantly different from that of MOM, and the profile of MOM may be partially restored in DHM through microbial expansion.


Assuntos
Análise de Alimentos , Metaboloma , Metabolômica , Leite Humano/química , Biologia Computacional/métodos , Análise de Alimentos/métodos , Microbiologia de Alimentos , Humanos , Metabolômica/métodos , Microbiota , Leite Humano/microbiologia
7.
PLoS One ; 15(10): e0240404, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33048937

RESUMO

Northwest Argentina (NWA) is a poor economic-geographical region, with the highest rate of diarrhea diseases. At the moment, there are no reports showing the epidemiological status of this region that would allow to establish methods for prevention and control of these infections and to indicate of the prevalent pathogen that produces them. Therefore we carried out an epidemiological study of the gastroenteritis etiological agents and their incidence in the pediatric population. A total of 17 823 fecal samples were collected, 14 242 from HNJ-Tuc, 2,257 from CePSI-Stgo and 1,324 from HINEP-Cat. In 2,595 samples a bacterial agent was identified, the 93.64% corresponded to Shigella/Salmonella clinical isolates. Shigella genus was the prevalent pathogen, being Shigella flexneri 2 the most frequent serotype. Most of the Shigella clinical isolates presented themselves as multidrug-resistant (MDR), harboring 2 to 3 genetic resistance determinants. 50% of the affected patients were children under 4 years old. Here, we demonstrate that bacterial gastrointestinal diseases strongly affect the health of NWA population. The appearance of epidemic outbreaks, as happened during 2014, suggest that they may be related to the socio-economic poverty of NWA. Recently, Shigella flexneri 2 has become the highest NWA´s incidence infectious agent. The acquisition of new antibiotic resistance determinants may play an important role in their adaptation and persistence.


Assuntos
Infecções Bacterianas/epidemiologia , Diarreia/microbiologia , Salmonella/isolamento & purificação , Shigella/isolamento & purificação , Adolescente , Argentina/epidemiologia , Criança , Pré-Escolar , Diarreia/epidemiologia , Farmacorresistência Bacteriana Múltipla , Disenteria Bacilar/epidemiologia , Estudos Epidemiológicos , Fezes/microbiologia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Reação em Cadeia da Polimerase Multiplex , Pobreza , Prevalência , Salmonella/classificação , Salmonella/genética , Infecções por Salmonella/epidemiologia , Sorogrupo , Shigella/classificação , Shigella/genética
8.
Biochimie ; 167: 152-161, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31563538

RESUMO

The intracellular pathogen Salmonella is an important cause of human foodborne diseases worldwide. Salmonella takes advantage of the phosphorelay regulatory systems to survive in the hostile environment of the host's gastrointestinal tract. It has been reported that the nitrate reductase Z (NR-Z), encoded by the narUZYV operon, is required during Salmonella transition to anaerobic environments and is constitutively produced at low levels, but little is known about the regulatory mechanism involved in the operon gene expression. In this work, we found that the RcsCDB system is activated by high concentrations of specific sugars as a carbon source. In this activation state, the RcsCDB system participates in the negative control of narUZYWV expression. This control strategy occurs during exponential growth when the carbon source is high, allowing for normal aerobic respiration. The RcsCDB system's participation in aerobic respiration is necessary to ensure efficient metabolism and optimal energy consumption when the bacteria are growing exponentially.


Assuntos
Proteínas de Bactérias/genética , Nitrato Redutase/genética , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/genética , Fatores de Transcrição/fisiologia , Regulação Bacteriana da Expressão Gênica , Óperon , Regiões Promotoras Genéticas , Transcrição Gênica
9.
Biochimie ; 160: 46-54, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30763640

RESUMO

Bacterial survive and respond to adverse changes in the environment by regulating gene transcription through two-component regulatory systems. In Salmonella Typhimurium the STM1485 gene expression is induced under low pH (4.5) during replication inside the epithelial host cell, but it is not involved in sensing or resisting to this condition. Since the RcsCDB system is activated under acidic conditions, we investigated whether this system is able to modulate STM1485 expression. We demonstrated that acid-induced activation of the RcsB represses STM1485 transcription by directly binding to the promoter. Under the same condition, the RstA regulator activates the expression of this gene. Physiologically, we observed that RcsB-dependent repression is required for the survival of bacteria when they are exposed to pancreatic fluids. We hypothesized that STM1485 plays an important role in Salmonella adaptation to pH changes, during transition in the gastrointestinal tract. We suggest that bacteria surviving the gastrointestinal environment invade the epithelial cells, where they can remain in vacuoles. In this new environment, acidity and magnesium starvation activate the expression of the RstA regulator in a PhoPQ-dependent manner, which in turn induces STM1485 expression. These levels of STM1485 allow increased bacterial replication within vacuoles to continue the course of infection.


Assuntos
Ácidos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Salmonella typhimurium/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Sequência de Bases , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/microbiologia , Viabilidade Microbiana , Regiões Promotoras Genéticas , Elementos Reguladores de Transcrição , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Transdução de Sinais , Fatores de Transcrição/genética
10.
J Bacteriol ; 201(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30510144

RESUMO

The Salmonella enterica serovar Typhimurium RcsCDB system regulates the synthesis of colanic acid and the flagellum as well as the expression of virulence genes. We previously demonstrated that the rcsC11 mutant, which constitutively activates the RcsB regulator, attenuates Salmonella virulence in an animal model. This attenuated phenotype was also produced by deletion of the slyA gene. In this work, we investigated if this antagonistic behavior is produced by modulating the expression of both regulator-encoding genes. We demonstrated that SlyA overproduction negatively regulates rcsB transcription. A bioinformatics analysis enabled us to identify putative SlyA binding sites on both promoters, P rcsDB and P rcsB , which control rcsB transcriptional levels. We also determined that SlyA is able to recognize and bind to these predicted sites to modulate the activity of both rcsB promoters. According to these results, SlyA represses rcsB transcription by direct binding to specific sites located on the rcsB promoters, thus accounting for the attenuated/virulence antagonistic behaviors. Moreover, we showed that the opposite effect between both regulators also physiologically affects the Salmonella motility phenotype. In this sense, we observed that under SlyA overproduction, P rcsB is repressed, and consequently, bacterial motility is increased. On the basis of these results, we suggest that during infection, the different RcsB levels produced act as a switch between the virulent and attenuated forms of Salmonella Thereby, we propose that higher concentrations of RcsB tilt the balance toward the attenuated form, while absence or low concentrations resulting from SlyA overproduction tilt the balance toward the virulent form.IMPORTANCE The antagonistic behavior of RcsB and SlyA on virulence gene expression led us to hypothesize that there is interplay between both regulators in a regulatory network and these could be considered coordinators of this process. Here, we report that the SlyA virulence factor influences motility behavior by controlling rcsB transcription from the P rcsB promoter. We also demonstrate that SlyA negatively affects the expression of the rcsB gene by direct binding to P rcsDB and P rcsB promoters. We suggest that different levels of RcsB act as a switch between the virulent and attenuated forms of Salmonella, where high concentrations of the regulator tend to tilt the balance toward the attenuated form and low concentrations or its absence tilt it toward the virulent form.


Assuntos
Proteínas de Bactérias/biossíntese , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas Repressoras/metabolismo , Salmonella typhimurium/genética , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biologia Computacional , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/genética , Flagelos/fisiologia , Expressão Gênica , Locomoção , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Repressoras/genética , Salmonella typhimurium/fisiologia , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...