Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 11(12): e0097322, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36326520

RESUMO

We report on two actinobacteriophages, Genamy16 and NovaSharks, that were isolated from soil in Florida using Gordonia rubripertincta NRRL B-16540. The genomes of both phages are ~65,000 bp, with similar GC contents, and, based on gene content similarity to phages in the Actinobacteriophage Database, were assigned to phage cluster DV.

2.
J Microbiol Biol Educ ; 23(1)2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35496705

RESUMO

Evidence-based studies on the benefits of integrating STEM into the arts are limited; however, some suggest that it can lead to improved scientific literacy and new approaches for artistic scholarship. Unfortunately, undergraduate education often creates disciplinary silos where the two are not integrated. Here, we discuss a unique collaboration between professors in the art and biology departments. Our goal was to integrate science into art courses using an agar art activity. We hypothesized that art students could effectively learn microbiology laboratory techniques and use them as novel tools for artistic practice. The activity was integrated into two to four sessions of introductory and advanced art courses over four semesters. After learning aseptic technique to culture bacteria, the students were supplied with a variety of media and bacterial strains and tasked with recreating a famous artist's drawing or using their own artistic concept. Student learning was assessed using a rubric to evaluate their art and demonstrate that the learning outcomes were met. Improvement in aesthetic, conception, and technical proficiency in handling the bacteria were demonstrated when comparing their first attempt at creating agar art to their second. Advanced art students earned higher scores than introductory students; however, the average scores for all students were "proficient" or above suggesting that the learning outcomes were met. The art was externally evaluated through American Society for Microbiology's (ASM's) Agar Art Contest and each time, at least one of our student artworks was chosen as a finalist for the People's Choice Award, providing validation of the success of our collaboration.

3.
Microbiol Spectr ; 9(1): e0000521, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34132578

RESUMO

Current methods for screening small molecules that inhibit the plasmid pCD1-encoded Yersinia pestis type III secretion system (T3SS) include lengthy growth curves followed by multistep luminescence assays or Western blot assays to detect secretion, or lack thereof, of effector proteins. The goal of this research was to develop a novel disk diffusion assay on magnesium oxalate (MOX) agar as a simple way to evaluate the susceptibility of Y. pestis to type III secretion system inhibitors. MOX agar produces distinct Y. pestis growth characteristics based on the bacteria's ability or inability to secrete effector proteins; small, barely visible colonies are observed when secretion is activated versus larger, readily visible colonies when secretion is inhibited. Wild-type Y. pestis was diluted and spread onto a MOX agar plate. Disks containing 20 µl of various concentrations of imidocarb dipropionate, a known Y. pestis T3SS inhibitor, or distilled water (dH2O) were placed on the plate. After incubation at 37°C for 48 h, visible colonies of Y. pestis were observed surrounding the disks with imidocarb dipropionate, suggesting that T3S was inhibited. The diameter of the growth of colonies surrounding the disks increased as the concentration of the T3SS inhibitor increased. Imidocarb dipropionate was also able to inhibit Y. pestis strains lacking effector Yops and Yop chaperones, suggesting that they are not necessary for T3S inhibition. This disk diffusion assay is a feasible and useful method for testing the susceptibility of Y. pestis to type III secretion system inhibitors and has the potential to be used in a clinical setting. IMPORTANCE Disk diffusion assays have traditionally been used as a simple and effective way to screen compounds for antibacterial activity and to determine the susceptibility of pathogens to antibiotics; however, they are limited to detecting growth inhibition only. Consequently, antimicrobial agents that inhibit virulence factors, but not growth, would not be detected. Therefore, we developed a disk diffusion assay that could detect inhibition of bacterial virulence factors, specifically, type III secretion systems (T3SSs), needle-like structures used by several pathogenic bacteria to inject host cells with effector proteins and cause disease. We demonstrate that magnesium oxalate (MOX) agar can be used in a disk diffusion assay to detect inhibition of the T3SS of Yersinia pestis, the causative agent of bubonic plague, by small-molecule inhibitors. This assay may be useful for screening additional small molecules that target bacterial T3SSs or testing the susceptibility of patient-derived samples to drugs that target T3SSs.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão/métodos , Ácido Oxálico/farmacologia , Sistemas de Secreção Tipo III/antagonistas & inibidores , Yersinia pestis/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão/instrumentação , Humanos , Peste/microbiologia , Sistemas de Secreção Tipo III/metabolismo , Yersinia pestis/crescimento & desenvolvimento , Yersinia pestis/metabolismo
4.
Microbiology (Reading) ; 164(3): 338-348, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29458689

RESUMO

The needle structures of type III secretion (T3S) systems are formed by the secretion and polymerization of a needle subunit protein, YscF in Yersinia pestis. A subset of T3S systems employ unique heterodimeric chaperones, YscE and YscG in Y. pestis, to prevent the polymerization of needle subunits within the bacterial cell. We demonstrate that the YscE/YscG chaperone is also required for stable YscF expression and for secretion of YscF. Overexpression of a functional maltose-binding protein (MBP)-YscG hybrid protein stabilized cytoplasmic YscF but YscF was not secreted in the absence of YscE. Furthermore, a YscE mutant protein was identified that functioned with YscG to stabilize cytosolic YscF; however, YscF was not secreted. These findings confirm a role for the YscE/YscG chaperone in YscF secretion and suggest that YscE may have a specific role in this process. Recent studies have shown that YscF deleted of its N-terminal 15 residues is still secreted and functional, suggesting that YscF may not require an N-terminal secretion signal. However, we demonstrate that YscF contains an N-terminal secretion signal and that a functional N-terminal signal is required for YscF secretion.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Sinais Direcionadores de Proteínas/genética , Sistemas de Secreção Tipo III/metabolismo , Yersinia pestis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Citoplasma/metabolismo , Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana/genética , Chaperonas Moleculares/genética , Mutação , Ligação Proteica , Multimerização Proteica , Yersinia pestis/genética
5.
Eur J Immunol ; 37(9): 2450-62, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17705129

RESUMO

Yersinia pestis evades immune responses in part by injecting into host immune cells several effector proteins called Yersinia outer proteins (Yops) that impair cellular function. This has been best characterized in the innate effector cells, but much less so for cells involved in adaptive immune responses. Dendritic cells (DC) sit at the crossroads between innate and adaptive immunity, and can function to initiate or inhibit adaptive immune responses. Although Y. pestis can target and inactivate DC, the mechanism responsible for this remains unclear. We have found that injection of Y. pestis YopJ into DC progenitors disrupts key signal transduction pathways and interferes with DC differentiation and subsequent function. YopJ injection prevents up-regulation of the NF-kappaB transcription factor Rel B and inhibits MAPK/ERK activation--both having key roles in DC differentiation. Furthermore, YopJ injection prevents costimulatory ligand up-regulation, LPS-induced cytokine expression, and yields differentiated DC with diminished capability to induce T cell proliferation and IFN-gamma induction. By modulating DC function through YopJ-mediated disruption of signaling pathways during progenitor to DC differentiation, Yersinia may interfere with the adaptive responses necessary to clear the infection as well as establish a tolerant immune environment that leads to chronic infection/carrier state in the surviving host.


Assuntos
Proteínas de Bactérias/imunologia , Diferenciação Celular/imunologia , Células Dendríticas/citologia , Células Dendríticas/imunologia , Yersinia pestis/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sobrevivência Celular , Células Cultivadas , Citocinas/biossíntese , Células Dendríticas/efeitos dos fármacos , Humanos , Ligantes , Lipopolissacarídeos/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Yersinia pestis/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...