Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anim Ecol ; 93(4): 475-487, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462682

RESUMO

Changes to migration routes and phenology create novel contact patterns among hosts and pathogens. These novel contact patterns can lead to pathogens spilling over between resident and migrant populations. Predicting the consequences of such pathogen spillover events requires understanding how pathogen evolution depends on host movement behaviour. Following spillover, pathogens may evolve changes in their transmission rate and virulence phenotypes because different strategies are favoured by resident and migrant host populations. There is conflict in current theoretical predictions about what those differences might be. Some theory predicts lower pathogen virulence and transmission rates in migrant populations because migrants have lower tolerance to infection. Other theoretical work predicts higher pathogen virulence and transmission rates in migrants because migrants have more contacts with susceptible hosts. We aim to understand how differences in tolerance to infection and host pace of life act together to determine the direction of pathogen evolution following pathogen spillover from a resident to a migrant population. We constructed a spatially implicit model in which we investigate how pathogen strategy changes following the addition of a migrant population. We investigate how differences in tolerance to infection and pace of life between residents and migrants determine the effect of spillover on pathogen evolution and host population size. When the paces of life of the migrant and resident hosts are equal, larger costs of infection in the migrants lead to lower pathogen transmission rate and virulence following spillover. When the tolerance to infection in migrant and resident populations is equal, faster migrant paces of life lead to increased transmission rate and virulence following spillover. However, the opposite can also occur: when the migrant population has lower tolerance to infection, faster migrant paces of life can lead to decreases in transmission rate and virulence. Predicting the outcomes of pathogen spillover requires accounting for both differences in tolerance to infection and pace of life between populations. It is also important to consider how movement patterns of populations affect host contact opportunities for pathogens. These results have implications for wildlife conservation, agriculture and human health.


Assuntos
Animais Selvagens , Interações Hospedeiro-Patógeno , Animais , Humanos , Virulência
2.
Philos Trans R Soc Lond B Biol Sci ; 378(1876): 20210506, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36934748

RESUMO

Ongoing environmental changes alter how natural selection shapes animal migration. Understanding how these changes play out theoretically can be done using evolutionary game theoretic (EGT) approaches, such as looking for evolutionarily stable strategies. Here, we first describe historical patterns of how EGT models have explored different drivers of migration. We find that there are substantial gaps in both the taxa (mammals, amphibians, reptiles, insects) and mechanisms (mutualism, interspecific competition) included in past EGT models of migration. Although enemy interactions, including parasites, are increasingly considered in models of animal migration, they remain the least studied of factors for migration considered to date. Furthermore, few papers look at changes in migration in response to perturbations (e.g. climate change, new species interactions). To address this gap, we present a new EGT model to understand how infection with a novel parasite changes host migration. We find three possible outcomes when migrants encounter novel parasites: maintenance of migration (despite the added infection cost), loss of migration (evolutionary shift to residency) or population collapse, depending on the risk and cost of getting infected, and the cost currency. Our work demonstrates how emerging infection can alter animal behaviour such as migration. This article is part of the theme issue 'Half a century of evolutionary games: a synthesis of theory, application and future directions'.


Assuntos
Migração Animal , Parasitos , Animais , Migração Animal/fisiologia , Modelos Teóricos , Insetos , Evolução Biológica , Teoria dos Jogos , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...