Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35630954

RESUMO

In this work, we investigated the optimization of a plasmonic slot waveguide (PSWG) in the mid-IR region particularly for a representative wavelength of 4.26 µm, which is the absorption line of CO2 and thus particularly relevant for applications. We analysed the mode features associated with metal-dielectric-metal (MDM), dielectric-metal-dielectric (DMD), and truncated metal film (TMF) structures with respect to the considered PSWG. Subsequently, the mode features of the PSWG were considered based on what we outlined for MDM, DMD, and TMF structures. Furthermore, as confinement factor and propagation length are two crucial parameters for absorption sensing applications, we optimized the PSWG based on a figure of merit (FOM) defined as the product of the aforementioned quantities. To characterize the propagation length, the imaginary part of the effective mode index of a guided mode was considered, leading to a dimensionless FOM. Finally, we investigated the PSWG also for other wavelengths and identified particularly attractive wavelengths and geometries maximizing the FOM.

2.
Sensors (Basel) ; 21(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34770299

RESUMO

In this study, we investigate the potential of one-dimensional plasmonic grating structures to serve as a platform for, e.g., sensitive refractive index sensing. This is achieved by comparing numerical simulations to experimental results with respect to the excitation of surface plasmon polaritons (SPPs) in the mid-infrared region. The samples, silver-coated poly-silicon gratings, cover different grating depths in the range of 50 nm-375 nm. This variation of the depth, at a fixed grating geometry, allows the active tuning of the bandwidth of the SPP resonance according to the requirements of particular applications. The experimental setup employs a tunable quantum cascade laser (QCL) and allows the retrieval of angle-resolved experimental wavelength spectra to characterize the wavelength and angle dependence of the SPP resonance of the specular reflectance. The experimental results are in good agreement with the simulations. As a tendency, shallower gratings reveal narrower SPP resonances in reflection. In particular, we report on 2.9 nm full width at half maximum (FWHM) at a wavelength of 4.12 µm and a signal attenuation of 21%. According to a numerical investigation with respect to a change of the refractive index of the dielectric above the grating structure, a spectral shift of 4122nmRIU can be expected, which translates to a figure of merit (FOM) of about 1421 RIU-1. The fabrication of the suggested structures is performed on eight-inch silicon substrates, entirely accomplished within an industrial fabrication environment using standard microfabrication processes. This in turn represents a decisive step towards plasmonic sensor technologies suitable for semiconductor mass-production.

3.
Sensors (Basel) ; 21(8)2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33920116

RESUMO

Plasmonic slot waveguides have attracted much attention due to the possibility of high light confinement, although they suffer from relatively high propagation loss originating from the presence of a metal. Although the tightly confined light in a small gap leads to a high confinement factor, which is crucial for sensing applications, the use of plasmonic guiding at the same time results in a low propagation length. Therefore, the consideration of a trade-off between the confinement factor and the propagation length is essential to optimize the waveguide geometries. Using silicon nitride as a platform as one of the most common material systems, we have investigated free-standing and asymmetric gold-based plasmonic slot waveguides designed for sensing applications. A new figure of merit (FOM) is introduced to optimize the waveguide geometries for a wavelength of 4.26 µm corresponding to the absorption peak of CO2, aiming at the enhancement of the confinement factor and propagation length simultaneously. For the free-standing structure, the achieved FOM is 274.6 corresponding to approximately 42% and 868 µm for confinement factor and propagation length, respectively. The FOM for the asymmetric structure shows a value of 70.1 which corresponds to 36% and 264 µm for confinement factor and propagation length, respectively.

4.
Sensors (Basel) ; 21(2)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467496

RESUMO

The design and modeling of a curved shape photonic crystal taper consisting of Si rods integrated with a photonic crystal waveguide are presented. The waveguide is composed of a hexagonal lattice of Si rods and optimized for CO2 sensing based on absorption spectroscopy. We investigated two different approaches to design a taper for a photonic crystal waveguide in a hexagonal lattice of silicon rods. For the first approach (type 1), the taper consists of a square lattice taper followed by a lattice composed of a smooth transition from a square to a hexagonal lattice. In the second approach (type 2), the taper consists of a distorted hexagonal lattice. Different shapes, such as convex, concave, and linear, for the curvature of the taper were considered and investigated. The structure of the taper was improved to enhance the coupling efficiency up to 96% at a short taper length of 25 lattice periods. The finite-difference time-domain (FDTD) technique was used to study the transmission spectrum and the group index. The study proves the improvement of coupling using a curved shape taper. Controlling the group index along the taper could be further improved to enhance the coupling efficiency in a wider spectral range.

5.
Sensors (Basel) ; 19(11)2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31159340

RESUMO

The detection of infrared radiation is of great interest for a wide range of applications, such as absorption sensing in the infrared spectral range. In this work, we present a CMOS compatible pyroelectric detector which was devised as a mid-infrared detector, comprising aluminium nitride (AlN) as the pyroelectric material and fabricated using semiconductor mass fabrication processes. To ensure thermal decoupling of the detector, the detectors are realized on a Si3N4/SiO2 membrane. The detectors have been tested at a wavelength close to the CO2 absorption region in the mid-infrared. Devices with various detector and membrane sizes were fabricated and the influence of these dimensions on the performance was investigated. The noise equivalent power of the first demonstrator devices connected to a readout circuit was measured to be as low as 5 . 3 × 10 - 9 W / Hz .

6.
J Phys Chem B ; 110(15): 7835-44, 2006 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-16610880

RESUMO

Broadband transient absorption (TA) spectroscopy, three-pulse photon echo peak shift (3PEPS), and anisotropy decay measurements were used to study the solvation dynamics in bulk water and interfacial water at ZrO(2) surfaces, using Eosin Y as a probe. The 3PEPS results show a multiexponential behavior with two subpicosecond components that are similar in bulk and interfacial water, while a third component of several picoseconds is significantly lengthened at the interface. The bandwidth correlation function from TA spectra exhibits the same behavior, and the TA spectra are well reproduced using the doorway-window picture with the time constants from PEPS. Our results suggest that interfacial water is restricted to a thickness of less than 5 A. Also the high-frequency collective dynamics of water does not seem to be affected by the interface. On the other hand, the increase of the third component may point to a slowing down of diffusional motion at the interface, although other effects, may play a role, which are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...