Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Sci Sports Exerc ; 55(6): 1003-1013, 2023 06 01.
Artigo em Inglês, Alemão | MEDLINE | ID: mdl-36604783

RESUMO

PURPOSE: Acute bouts of exercise influence the communication and organization of brain networks, with exercise intensity and volume regarded as key moderators. However, differences in coordination demands and limb involvement between exercise modes may also affect the communication and organization of brain networks after exercise and should be considered additionally. This study aimed to investigate the effect of mode on exercise-induced changes in electroencephalogaphy (EEG) resting-state networks comparing running (RUN) and cross-country skating (XC). METHODS: Fifteen male, highly trained participants were tested for peak oxygen uptake (V̇O 2peak ) during RUN (65.3 mL·min -1 ·kg -1 ) and XC (63.5 mL·min -1 ·kg -1 ) followed by incremental protocols at 50%, 70%, and 90% of speed at V̇O 2peak in both modes on the treadmill. After each exercise bout, 5-min resting-state EEG assessments using 64 channels were performed. Upon graph theory, small world index (SWI), clustering coefficient (CC), and path length (PL) were assessed in theta, alpha-1 and alpha-2 frequency bands. Repeated-measures ANOVA was applied to analyze the influence of exercise intensity and mode on modulations in brain network efficiency. RESULTS: Main effects of mode on SWI ( P = 0.047), CC ( P < 0.001), and PL ( P = 0.031) in the alpha-2 network indicated stronger modulations in network efficiency after XC. Main effects of exercise intensity in the theta network indicated modulated SWI ( P < 0.001), CC ( P < 0.001), and PL ( P = 0.003) after exercise at 90% of V̇O 2peak speed. Physiological outcomes (heart rate, blood lactate concentration, and rating of perceived exertion) were influenced by intensity solely. CONCLUSIONS: The present study demonstrates that an acute bout of coordinatively challenging endurance exercise may affect brain networks differently compared with running. Future studies may consider exercise mode as a potential moderator in the acute interaction between exercise and the brain.


Assuntos
Consumo de Oxigênio , Corrida , Humanos , Masculino , Consumo de Oxigênio/fisiologia , Exercício Físico/fisiologia , Corrida/fisiologia , Teste de Esforço , Ácido Láctico , Eletroencefalografia , Resistência Física/fisiologia
2.
Front Sports Act Living ; 4: 849731, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498513

RESUMO

Purpose: The objective of this study was to compare physiological and kinematic responses to double poling (DP) between long-distance (LDS) and all-round (ARS) cross-country skiers. Methods: A number of five world-class LDS (28.8 ± 5.1 years, maximal oxygen uptake (VO2max): 70.4 ± 2.9 ml·kg-1·min-1) and seven ARS (22.3 ± 2.8 years, VO2max: 69.1 ± 4.2 ml·kg-1·min-1) athletes having similar training volumes and VO2max performed three identical tests; (1) submaximal and incremental tests to exhaustion while treadmill DP to determine gross efficiency (GE), peak oxygen uptake (DP-VO2peak), and peak speed; (2) submaximal and incremental running tests to exhaustion to determine GE, VO2max (RUN-VO2max), and peak speed; and (3) an upper-body pull-down exercise to determine one repetition maximum (1RM) and peak power. Physiological responses were determined during both DP and running, together with the assessments of kinematic responses and electromyography (EMG) of selected muscles during DP. Results: Compared to ARS, LDS reached higher peak speed (22.1 ± 1.0 vs. 20.7 ± 0.9 km·h-1, p = 0.030), DP-VO2peak (68.3 ± 2.1 vs. 65.1 ± 2.7 ml·kg-1·min-1, p = 0.050), and DP-VO2peak/RUN-VO2max ratio (97 vs. 94%, p = 0.075) during incremental DP to exhaustion, as well as higher GE (17.2 vs. 15.9%, p = 0.029) during submaximal DP. There were no significant differences in cycle length or cycle rate between the groups during submaximal DP, although LDS displayed longer relative poling times (~2.4% points) at most speeds compared to ARS (p = 0.015). However, group × speed interaction effects (p < 0.05) were found for pole angle and vertical fluctuation of body center of mass, with LDS maintaining a more upright body position and more vertical pole angles at touchdown and lift-off at faster speeds. ARS displayed slightly higher normalized EMG amplitude than LDS in the muscles rectus abdominis (p = 0.074) and biceps femoris (p = 0.027). LDS performed slightly better on 1RM upper-body strength (122 vs. 114 kg, p = 0.198), with no group differences in power in the pull-down exercise. Conclusions: The combination of better DP-specific aerobic energy delivery capacity, efficiency, and technical solutions seems to contribute to the superior DP performance found among specialized LDS in comparison with ARS.

3.
PLoS One ; 16(8): e0256662, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34428258

RESUMO

The purpose of the present study was to investigate how various laboratory- and field-based tests predict on-snow cross-country (XC) skiing and roller-skiing performance. Thirty-three national-level male XC skiers (19.0±2.5 years, maximal oxygen uptake [VO2max] 70.8±4.7 mL·min-1·kg-1) performed a 13.6-km roller-ski skating competition tracked by a global positioning system (GPS), which together with individual distance International Ski Federation (FIS) points was used to assess their performance level. On separate days, time in a 6.4-km uphill running time-trial (RUN-TT) and 1.3-km uphill roller-ski double-poling time-trial (DP-TT) was measured in the field and performance indices determined while running and roller-ski skating in the laboratory. The mean finishing times for the RUN-TT and the DP-TT showed moderate to large correlations with distance FIS points and performance in the roller-ski skating competition (r = 0.56-0.72; all p<0.05). RUN-TT was more strongly correlated with distance FIS points than DP-TT (r = 0.72 versus 0.56; p<0.05). Performance indices and VO2max in incremental running and roller-ski skating in the laboratory showed large to very large correlations with distance FIS points and roller-skiing performance (r = 0.50-0.90; all p<0.05). Performance indices and VO2max in running tended to be more strongly correlated with roller-skiing performance than corresponding values obtained while roller-ski skating (all p<0.10). The present findings suggest that both laboratory performance indices and field-based performance tests provide valid predictions of XC skiing and roller-skiing performance in a heterogeneous group of male XC skiers, with test values obtained in running tending to be more strongly correlated with XC skiing performance than those found for technique-specific modalities on roller skis. However, more sophisticated and mode-specific testing might be required for more homogenous groups of elite XC skiers.


Assuntos
Desempenho Atlético , Esqui , Adolescente , Frequência Cardíaca , Humanos , Ácido Láctico/sangue , Masculino , Consumo de Oxigênio , Corrida , Patinação , Adulto Jovem
4.
J Hum Kinet ; 77: 97-105, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34168695

RESUMO

The aims of this study were to compare performance with physiological and perceptual responses on steep uphill inclines between double poling and diagonal stride and to investigate the effects of pole length when double poling. Eight male, competitive cross-country skiers (22 ± 1.1 yrs, peak oxygen uptake (VO2peak) in the diagonal stride: 69.4 ± 5.5 ml·kg-1·min-1) performed four identical tests, one in the diagonal stride, and three in double poling with different pole lengths (self-selected, self-selected -5 cm and self-selected +10 cm). Each test was conducted at a fixed speed (10 km/h), with inclination rising by 1%, starting with 7%, each until voluntary exhaustion. VO2peak, the heart rate, blood lactate concentration, and the rating of perceived exertion were determined for each pole length in each test. The peak heart rate (p < 0.001) and VO2peak (p = 0.004) were significantly higher in the diagonal stride test compared with double poling with all pole lengths. Time to exhaustion (TTE) differed significantly between all four conditions (all p < 0.001), with the following order from the shortest to the longest TTE: short poles, normal poles and long poles in double poling, and the diagonal stride. Consequently, a significantly higher slope inclination was reached (p < 0.001) using the diagonal stride (17%) than for double poling with long poles (14%), normal (13%) and short (13%) poles. The current study showed better performance and higher VO2peak in the diagonal stride compared to double poling in steep uphill terrain, demonstrating the superiority of the diagonal stride for uphill skiing. However, in double poling, skiers achieved improved performance due to greater skiing efficiency when using long poles, compared to normal and short poles.

5.
Front Sports Act Living ; 3: 654864, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33969298

RESUMO

Cross-country (XC) skiers employ whole-body exercise to generate speed through poles and skis. The choice of optimal pole and ski lengths are therefore of high importance. The aim of this study was to document pole and ski lengths among elite male and female cross-country skiers in the classical and skating styles and to investigate sex differences in body-height-normalized pole and ski lengths. Our secondary purpose was to correlate body-height-normalized pole and ski lengths with performance level within both sexes. In total, Norwegian men and women (n = 87 and 36, respectively), participating in the Norwegian XC championship 2020, were investigated. Most athletes used poles close to the length allowed by the International Ski Federation (FIS) in the classical style among both sexes, with men using slightly longer poles than women (p < 0.05). Body-height-normalized pole lengths in skating were similar in men and women (around 90% of body height). Women used relatively longer ski lengths than men in both styles (p < 0.05). Women showed moderate correlations (r = 0.43, p < 0.05) between body-height-normalized pole lengths and sprint performance. Male and female cross-country skiers use as long classical ski poles as possible within the current regulations, while they use skating poles similar to recommendations given by the industry. The fact that men use longer body-height-normalized poles than women, where there is a correlation between pole length and sprint performance, indicate that faster women are able to better utilize the potential of using longer poles when double-poling. However, while women use relatively longer skis than men, no correlation with performance occurred for any of the sexes.

6.
Front Sports Act Living ; 3: 641389, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33718870

RESUMO

Purpose: To investigate the training characteristics of world-class long-distance cross-country skiers. Methods: Twelve world-class male long-distance cross-country skiing specialists reported training from their best season, through a questionnaire and follow-up interviews. Training data were systemized by training form (endurance, strength, and speed), intensity [low- (LIT), moderate- (MIT), and high-intensity training (HIT)], and exercise mode, followed by a division into different periodization phases. Specific sessions utilized in the various periodization phases were also analyzed. Results: The annual training volume was 861 ± 90 h, consisting of 795 ± 88 h (92%) of endurance training, 53 ± 17 h (6%) of strength training, and 13 ± 14 h (2%) of speed training. A pyramidal (asymptotic) endurance training distribution was employed (i.e., 88.7% LIT, 6.4% MIT, and 4.8% HIT). Out of this, 50-60% of the endurance training was performed with double poling (DP), typically in the form of a daily 3- to 5-h session. A relatively evenly distributed week-to-week periodization of training load was commonly used in the general preparation period, whereas skiers varied between high-load training weeks and competition weeks, with half the training volume and a reduced amount of DP during the competition period. Conclusions: To match the specific demands of long-distance cross-country skiing, specialized long-distance skiers perform relatively long but few training sessions and use a pyramidal intensity distribution pattern and a large amount of training spent using the DP technique.

7.
Sports (Basel) ; 8(6)2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32466372

RESUMO

The aim of this study was to investigate if the order of submaximal lactate threshold and maximal oxygen uptake testing would influence test outcomes. Twelve well-trained male cross-country skiers (mean age 19.6 years) performed two test sessions within a week in a within-subjects repeated measures with cross-over design study. A maximal oxygen uptake test (VO2max) followed by a lactate threshold (LT) test and vice versa, were performed. The test data included VO2, blood lactate (La-b), heart rate (HR), performance speed, Borg scale (RPE) at all stages and lactate accumulation throughout the whole test protocol including the breaks. No significant effect of testing order was found for: VO2max (74.23 vs. 73.91 mL∙min-1∙kg-1), maximal HR (190.7 vs. 189.9 bpm) and speed at LT during uphill running. Three out of four common definitions of LT resulted in the same La-b at the last two steps, 11 and 12 km/h respectively, in the two protocols. It is worth noting that VO2, HR and La-b were higher in the first two stages of the LT test when VO2max was tested first in the protocol. Well-trained cross-country skiers conclusively attained a similar VO2max and LT in both protocols, and the two tests did not seem to influence each other in terms of the degree of exhaustion that occurs in a single VO2max or an incremental LT test. However, when using a curvilinear function to define the LT, it is important to know that the VO2max test can influence levels of VO2, HR and La-b at the first two stages of the LT test.

8.
Int J Sports Physiol Perform ; 15(7): 941-948, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32182587

RESUMO

PURPOSE: To compare the effects of a short specific and a long traditional warm-up on time-trial performance in cross-country skiing sprint using the skating style, as well as related differences in pacing strategy and physiological responses. METHODS: In total, 14 (8 men and 6 women) national-level Norwegian cross-country skiers (age 20.4 [3.1] y; VO2max 65.9 [5.7] mL/kg/min) performed 2 types of warm-up (short, 8 × 100 m with gradual increase from 60% to 95% of maximal speed with a 1-min rest between sprints, and long, ∼35 min at low intensity, including 5 min at moderate and 3 min at high intensity) in a randomized order with 1 hour and 40 minutes of rest between tests. Each warm-up was followed by a 1.3-km sprint time trial, with continuous measurements of speed and heart rate. RESULTS: No difference in total time for the time trial between the short and long warm-ups (199 [17] vs 200 [16] s; P = .952), or average speed and heart rate for the total course, or in the 6 terrain sections (all P < .41, η2 < .06) was found. There was an effect of order, with total time-trial time being shorter during test 2 than test 1 (197 [16] vs 202 [16] s; P = .004). No significant difference in blood lactate and rating of perceived exertion was found between the short versus long warm-ups or between test 1 and test 2 at any of the measurement points during the test day (P < .58, η2 > .01). CONCLUSIONS: This study indicates that a short specific warm-up could be as effective as a long traditional warm-up during a sprint time trial in cross-country skiing.

9.
PLoS One ; 14(2): e0211550, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30794571

RESUMO

The benefits of using longer than self-selected poles have been shown in double poling, but these potential benefits have not been examined in the gear 3 ski skating sub-technique (G3), during which the poling movement is very similar to double poling. The aim of this study was to examine the effect of longer than self-selected poles on physiological and perceptual responses in the G3 sub-technique. Ten cross-country skiers and biathletes (VO2max 72.4 ± 3.0 ml∙min-1∙kg-1, age 20.1 ± 2.8 years, height 1.81 ± 0.03 m and weight 73.1 ± 4.6 kg) completed two tests, each with three different submaximal intensities, during roller skiing using the G3 technique. The first test was carried out at a fixed speed (10 km∙h-1) and the skiers performed two intervals of 5 min at 7, 9 and 11% inclination on a roller ski treadmill with self-selected poles (SSP) and 7.5 cm longer poles (LP) at each step. The second test had a fixed inclination of 4% and speeds of 14, 17 and 20 km∙h-1, also performed with SSP and LP at each step. At fixed speed, the oxygen uptake was 2.7% lower (P = 0.005) and the gross efficiency (GE) 2.1% higher (P = 0.01) with LP than with SSP at the steepest inclination of 11%. At fixed inclination, the oxygen uptake was 2.1% lower (P = 0.01) and the GE was 4.1% higher (P = 0.03) with LP than with SSP at the highest speed of 20 km∙h-1. At 14 km∙h-1, the oxygen uptake was 3.0% lower (P = 0.05) and GE was 3.8% higher (P = 0.03) with LP than with SSP. Our novel findings show that longer poles in the G3 technique may enhance the efficiency of skiing.


Assuntos
Esqui/fisiologia , Equipamentos Esportivos , Adulto , Fenômenos Biomecânicos , Teste de Esforço , Frequência Cardíaca , Humanos , Masculino , Consumo de Oxigênio/fisiologia
10.
Int J Sports Physiol Perform ; 14(6): 788­795, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30569776

RESUMO

Purpose: To investigate the contribution from maximal speed (Vmax) and %Vmax to the finish sprint speed obtained in a cross-country sprint in the classical and skating style, as well as the coinciding changes in kinematic patterns and the effect of pacing strategy on the %Vmax. Methods: Twelve elite male cross-country skiers performed two 80-m Vmax tests on flat terrain using the classical double-poling and skating G3 techniques, followed by 4 simulated 1.4-km sprint time trials, performed with conservative (controlled start) and positive (hard start) pacing strategies in both styles with a randomized order. In all cases, these time trials were finalized by sprinting maximally over the last 80 m (the Vmax section). Results: Approximately 85% of Vmax was obtained in the finish sprint of the 1.4-km competitions, with Vmax and %Vmax contributing similarly (R2 = 51-78%) to explain the overall variance in finish sprint speed in all 4 cases (P < .05). The changes in kinematic pattern from the Vmax to the finish sprint included 11-22% reduced cycle rate in both styles (P < .01), without any changes in cycle length. A 3.6% faster finish sprint speed, explained by higher cycle rate, was found by conservative pacing in classic style (P < .001), whereas no difference was seen in skating. Conclusions: Vmax ability and %Vmax contributed similarly to explain the finish sprint speed, both in the classic and skating styles, and independent of pacing strategy. Therefore, sprint cross-country skiers should concurrently develop both these capacities and employ technical strategies where a high cycle rate can be sustained when fatigue occurs.


Assuntos
Desempenho Atlético/fisiologia , Esqui/fisiologia , Adolescente , Fenômenos Biomecânicos , Frequência Cardíaca , Humanos , Masculino , Consumo de Oxigênio , Adulto Jovem
11.
PLoS One ; 13(11): e0207195, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30440017

RESUMO

OBJECTIVES: We investigated sex-based differences in speed, sub-technique selection, and kinematic patterns during low- (LIT) and high-intensity training (HIT) for classical cross-country (XC) skiing across varying terrain. METHODS: Six male and six female elite XC skiers with an approximately 15% differences in VO2max (men: 68.9±2.9 mL·min-1·kg-1, women: 60.1±3.3 mL·min-1·kg-1) were monitored using a multi-sensor system to collect time-synchronised data of heart rate, speed, and multiple tri-axial inertial measurements units while XC skiing on a 5-km competition track. RESULTS: Men skied 21% faster than women during HIT (5.9±0.3 m·s-1 vs. 4.9±0.2 m·s-1, P < .001), with the greatest difference (26%) while skiing on flat terrain, whereas skiing speed did not significantly differ between men and women during LIT. At similar instructed intensity and rating of perceived effort, women exhibited significantly higher relative heart rate (85±2% vs. 71±3% of maximum) and blood lactate levels (4.0±1.3 vs. 1.2±0.2 mmol/L) during LIT (all P < .001) than men, whereas physiological responses did generally not differ between the sexes during HIT. During both intensities and among both sexes, double poling (DP) was the sub-technique most used relative to distance, followed by miscellaneous sub-techniques (MISC), diagonal stride (DIA), kick double poling (DK) and herringbone (HRB). In relation to distance women used DIA more than men during LIT (22% vs. 17%, P = .009) and HIT (23% vs. 12%, P = .001), whereas men used MISC, including tucking and turning, more than women during LIT (39% vs. 25%, P = .017) and HIT (41% vs. 30%, P = .064). In particular, men used DP more than women while skiing the uphill sections during both LIT (24% vs. 11%, P = .015) and HIT (39% vs. 13%, P = .002). CONCLUSIONS: Our findings provide novel insights into sex-based differences in speed, sub-technique selection, and kinematic patterns during LIT and HIT for classical skiing.


Assuntos
Desempenho Atlético , Caracteres Sexuais , Esqui , Atletas , Desempenho Atlético/fisiologia , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Esqui/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...