Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 95(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38416041

RESUMO

Atomic force microscopy (AFM) uses a scanning stylus to directly measure the surface characteristics of a sample. Since AFM relies on nanoscale interaction between the probe and the sample, the resolution of AFM-based measurement is critically dependent on the geometry of the scanning probe tip. This geometry, therefore, can limit the development of related applications. However, AFM itself cannot be effectively used to characterize AFM probe geometry, leading researchers to rely on indirect estimates based on force measurement results. Previous reports have described sample jigs that enable the observation of AFM probe tips using Transmission Electron Microscopy (TEM). However, such setups are too tall to allow sample tilting within more modern high-resolution TEM systems, which can only tilt samples less than a few millimeters in thickness. This makes it impossible to observe atomic-scale crystallographic lattice fringes by aligning the imaging angle perfectly or to view a flat probe tip profile exactly from the side. We have developed an apparatus that can hold an AFM tip for TEM observation while remaining thin enough for tilting, thereby enabling atomic-scale tip characterization. Using this technique, we demonstrated consistent observation of AFM tip crystal structures using tilting in TEM and found that the radii of curvature of nominally identical probes taken from a single box varied widely from 1.4 nm for the sharpest to 50 nm for the most blunt.

2.
Lab Chip ; 23(12): 2854-2865, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37255014

RESUMO

Droplet microfluidics has become a powerful tool in life sciences, underlying digital assays, single-cell sequencing or directed evolution, and it is making foray in physical sciences as well. Imaging and incubation of droplets are crucial, yet they are encumbered by the poor optical, thermal and mechanical properties of PDMS, a material commonly used in microfluidics labs. Here we show that Si is an ideal material for droplet chambers. Si chambers pack droplets in a crystalline and immobile monolayer, are immune to evaporation or sagging, boost the number of collected photons, and tightly control the temperature field sensed by droplets. We use the mechanical and optical benefits of Si chambers to image ≈1 million of droplets from a multiplexed digital assay - with an acquisition rate similar to the best in-line methods. Lastly, we demonstrate their applicability with a demanding assay that maps the thermal dependence of Michaelis-Menten constants with an array of ≈150 000 droplets. The design of the Si chambers is streamlined to avoid complicated fabrication and improve reproducibility, which makes Si a complementary material to PDMS in the toolbox of droplet microfluidics.

3.
Sci Rep ; 11(1): 14100, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238945

RESUMO

We have designed and implemented a compact, cost-efficient miniaturised light-sheet microscopy system based on optical microelectromechanical systems scanners and tunable lenses. The system occupies a footprint of 20 × 28 × 13 cm3 and combines off-the-shelf optics and optomechanics with 3D-printed structural and optical elements, and an economically costed objective lens, excitation laser and camera. All-optical volume scanning enables imaging of 435 × 232 × 60 µm3 volumes with 0.25 vps (volumes per second) and minimum lateral and axial resolution of 1.0 µm and 3.8 µm respectively. An open-top geometry allows imaging of samples on flat bottomed holders, allowing integration with microfluidic devices, multi-well plates and slide mounted samples, with applications envisaged in biomedical research and pre-clinical settings.

4.
Biosens Bioelectron ; 169: 112546, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32911315

RESUMO

Real-time in-vitro multi-modality characterization of neuronal cell ensemble involves highly complex interdependent phenomena and processes. Although a variety of microelectrode arrays (MEAs) have been reported, diagnosis techniques are limited in term of sensing area, optical transparency, resolution and number of modalities. This paper presents an optically transparent thin-film-transistor (TFT) array biosensor chip for neuronal ensemble investigation, in which TFT electrodes are used for six modalities including extracellular voltage recording of both action potential (AP) and local field potential (LFP), current or voltage stimulation, chemical stimulation, electrical impedance measurement, and optical imaging. The sensor incorporates a large sensing area (15.6 mm × 15.6 mm) with a 200 × 150 array of indium-tin-oxide (ITO) electrodes placed at a 50 µm or 100 µm pixel pitch and with 10 ms temporal resolution; these performances are comparable to the state-of-the-art MEA devices. The TFT electrode array is designed based on the switch matrix architecture. The reliability and stability of TFTs are examined by measuring their electrical characteristics. Impedance spectroscopy function is verified by mapping the neuron position and the status (cells alive or dead, contamination) on the electrodes, which facilitates the biochemical studies in electrical domain that adds quantitative views to visual observation of cells through the optical microscopy. An in-vitro neuron culture is studied using electrophysiological, electrochemical, and optical characterization. Detailed signal analysis is demonstrated to prove the capability of bioassay.


Assuntos
Técnicas Biossensoriais , Impedância Elétrica , Neurônios , Imagem Óptica , Reprodutibilidade dos Testes
5.
Micromachines (Basel) ; 11(8)2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32824556

RESUMO

An extended version of cross-bar type addressing technique is developed for three-port electrostatic micro shutters arranged in an arrayed format. A microelectromechanical systems (MEMS) shutter blade suspended by a pair of torsion beams works as a movable electrode that is either attracted upwards to the cover plate to close the aperture or retracted downwards into the through-hole to open it. Tri-state positioning of the shutter-i.e., open, rest, and close-is controlled by the hysteresis loop of the electrostatic pull-in and release behavior using the combination of the voltages applied to the shutter, the cover, and the substrate. Random access addressing of the shutters is demonstrated by a control system composed of MATLAB-coded Arduino electronics. The shutter array developed in this work is for a sub-cluster of a reconfigurable shutter array under development for a multi-object galactic astronomy.

6.
ACS Appl Mater Interfaces ; 12(32): 36449-36457, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32633932

RESUMO

In the era of a trillion sensors, a tremendous number of sensors will be consumed to collect information for big data analysis. Once they are installed in a harsh environment or implanted in a human/animal body, we cannot easily retrieve the sensors; the sensors for these applications are left unattended but expected to decay after use. In this paper, a disposable temperature sensor that disappears with contact with water is reported. The gel electrolyte based on an ionic liquid and a water-soluble polymer, so-called ionic gel, exhibits a Young's modulus of 96 kPa, which is compatible with human muscle, skin, and organs, and can be a wearable device or in soft robotics. A study on electrical characteristics of the sensor with various temperatures reveals that the ionic conductivity and capacitance increased by 12 times and 4.8 times, respectively, when the temperature varies from 30 to 80 °C. The temperature sensor exhibits a short response time of 1.4 s, allowing real-time monitoring of temperature change. Furthermore, sensors in an array format can obtain the spatial distribution of temperature. The developed sensor was found to fully dissolve in water in 16 h. The water-dissolvability enables practical applications including healthcare, artificial intelligence, and environmental sensing.


Assuntos
Técnicas Biossensoriais/instrumentação , Hidrogéis/química , Líquidos Iônicos/química , Álcool de Polivinil/química , Ésteres do Ácido Sulfúrico/química , Inteligência Artificial , Módulo de Elasticidade , Eletricidade , Eletrólitos/química , Humanos , Íons/química , Robótica/instrumentação , Pele , Solubilidade , Temperatura , Água , Dispositivos Eletrônicos Vestíveis
7.
Micromachines (Basel) ; 11(3)2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32143465

RESUMO

Despite the development of energy-efficient devices in various applications, microelectromechanical system (MEMS) electrostatic actuators yet require high voltages to generate large displacements. In this respect, electrets exhibiting quasi-permanent electrical charges allow large fixed voltages to be integrated directly within electrode structures to reduce or eliminate the need of DC bias electronics. For verification, a biased electret layer was fabricated at the inner surface of a silicon on insulator (SOI) structure facing a 2 µm gap owing to the high compatibility of silicon micromachining and the potassium-ion-electret fabrication method. A electret-augmented actuator with an out-of-plane motion membrane reached a sound pressure level (SPL) of 50 dB maximum with AC input voltage of alone, indicating a potential for acoustic transducer usage such as microspeakers. Such devices with electret biasing require only the input signal voltage, thus contributing to reducing the overall power consumption of the device system.

8.
Talanta ; 212: 120780, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32113543

RESUMO

Along with the rise of diabetes mellitus issue, glucose sensor has become an imperative tool for healthcare. Studies have been widely conducted on electrode materials for glucose sensors; metal nanoparticles and/or oxide particles in its nano-size are reported to exhibit remarkable electrocatalytic activities in the non-enzymatic glucose sensors. However, the decoration processes of metal nanoparticles or nano-sized oxides are known to be tedious and time-consuming. In addition, the processes usually result in great amount of waste solution emission. In this study, therefore, an Au nanoparticles (NPs)-TiO2 modified polyaniline (PANI) composite is practiced towards the applications of non-enzymatic glucose sensors, by using a facile and time-saving thermal reduction and by electrodeposition techniques with low waste solution emission. Au NPs, which is modified with TiO2 nanoparticles in its optimized amount, performs the highest electrocatalytic activity to the oxidation of glucose in alkaline solution. The stability of Au NPs-TiO2/PANI is superior to those of most reported results over 70 days. The sensitivity and detection limit are 379.8 µA mM-1 cm-2 and 0.15 µM, respectively. High selectivity of Au NPs-TiO2/PANI is also confirmed by the interference test. Spill-over effect of OH- between Au NPs and TiO2, which is the main reason for the improved catalytic activity, is described in this study.


Assuntos
Compostos de Anilina/química , Glicemia/análise , Técnicas Eletroquímicas/instrumentação , Nanopartículas Metálicas/química , Titânio/química , Glicemia/química , Técnicas Eletroquímicas/métodos , Eletrodos , Ouro/química , Humanos , Limite de Detecção , Oxirredução , Reprodutibilidade dos Testes
9.
Sci Technol Adv Mater ; 20(1): 124-143, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30815044

RESUMO

In this paper, we look into the fundamental mechanism to retrieve the power from physical vibrations by using microelectromechanical systems (MEMS) energy harvesters. An analytical model is presented for the velocity-damped resonant generator (VDRG) that delivers electrical power through the power enhancement mechanism using the mechanical resonance of a suspended mass. Deliverable power is also analytically discussed with respect to the theoretical limit, and a view to understand the VDRG behaviors is presented in association with the impedance matching condition and the quality factors. Mechano-electric power conversions including electrostatic induction, electromagnetic induction, and piezoelectric effect are discussed to study the scaling effect. Recent examples of MEMS VDRGs are reviewed and evaluated in terms of the power density.

10.
Small ; 14(32): e1800937, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29931732

RESUMO

A water-dissolvable electrolyte is developed by combining an ionic liquid (IL) with poly(vinyl alcohol) (PVA), which decays over time by contact with water. An IL generally consists of two species of ions (anion and cation), and forms an electrical double layer (EDL) of a large electrostatic capacitance due to the ions accumulated in the vicinity of a conductive electrode when voltage is applied. In a similar manner, the ionic gel developed in this work forms an EDL due to the ions suspended in the conjugated polymer network while maintaining the gel form. Test measurements show a large capacitance of 13 µF cm-2 within the potential window of the IL. The ionic gel shows an electrical conductance of 20 µS cm-1 due to the ionic conduction, which depends on the weight ratio of the IL with respect to the polymer. The developed ionic gel dissolves into water in 16 h. Potential application includes the electrolyte in disposable electronics such as distributed sensors and energy harvesters that are supposed to be harmless to environment.

11.
Sci Technol Adv Mater ; 19(1): 317-323, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29707070

RESUMO

A novel triboelectric energy harvester has been developed using an ionic liquid polymer with cations fixed at the surface. In this report, the fabrication of the device and the characterization of its energy harvesting performance are detailed. An electrical double layer was induced in the ionic liquid polymer precursor to attract the cations to the surface where they are immobilized using a UV-based crosslinking reaction. The finalized polymer is capable of generating an electrical current when contacted by a metal electrode. Using this property, energy harvesting experiments were conducted by cyclically contacting a gold-surface electrode with the charge fixed surface of the polymer. Control experiments verified the effect of immobilizing the cations at the surface. By synthesizing a polymer with the optimal composition ratio of ionic liquid to macromonomer, an output of 77 nW/cm2 was obtained with a load resistance of 1 MΩ at 1 Hz. This tuneable power supply with a µA level current output may contribute to Internet of Things networks requiring numerous sensor nodes at remote places in the environment.

12.
R Soc Open Sci ; 5(3): 172366, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29657822

RESUMO

Field-effect transistor (FET)-based biosensors have a wide range of applications, and a bio-FET odorant sensor, based on insect (Sf21) cells expressing insect odorant receptors (ORs) with sensitivity and selectivity, has emerged. To fully realize the practical application of bio-FET odorant sensors, knowledge of the cell-device interface for efficient signal transfer, and a reliable and low-cost measurement system using the commercial complementary metal-oxide semiconductor (CMOS) foundry process, will be indispensable. However, the interfaces between Sf21 cells and sensor devices are largely unknown, and electrode materials used in the commercial CMOS foundry process are generally limited to aluminium, which is reportedly toxic to cells. In this study, we investigated Sf21 cell-device interfaces by developing cross-sectional specimens. Calcium imaging of Sf21 cells expressing insect ORs was used to verify the functions of Sf21 cells as odorant sensor elements on the electrode materials. We found that the cell-device interface was approximately 10 nm wide on average, suggesting that the adhesion mechanism of Sf21 cells may differ from that of other cells. These results will help to construct accurate signal detection from expressed insect ORs using FETs.

13.
Appl Opt ; 56(24): 6720-6727, 2017 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-29048009

RESUMO

We report on a bidirectional free-space optical system that is capable of automatic connection and tracking of an optical link between two nodes. A piezoelectric micro-electro-mechanical systems (MEMS) optical scanner is used to steer a laser beam of two wavelengths superposed to visually present a communication zone, to search for the position of the remote node by means of the retro-reflector optics, and to transmit the data between the nodes. A feedback system is developed to control the MEMS scanner to dynamically establish the optical link within a 10-ms transition time and to keep track of the moving node.

14.
Nano Lett ; 17(7): 4347-4353, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28594564

RESUMO

Dynamic control of electromagnetic heat transfer without changing mechanical configuration opens possibilities in intelligent thermal management in nanoscale systems. We confirmed by experiment that the radiative heat transfer is dynamically modulated beyond the blackbody limit. The near-field electromagnetic heat exchange mediated by phonon-polariton is controlled by the metal-insulator transition of tungsten-doped vanadium dioxide. The functionalized heat flux is transferred over an area of 1.6 cm2 across a 370 nm gap, which is maintained by the microfabricated spacers and applied pressure. The uniformity of the gap is validated by optical interferometry, and the measured heat transfer is well modeled as the sum of the radiative and the parasitic conductive components. The presented methodology to form a nanometric gap with functional heat flux paves the way to the smart thermal management in various scenes ranging from highly integrated systems to macroscopic apparatus.

15.
Micromachines (Basel) ; 8(10)2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30400483

RESUMO

We have developed a micro-electro-mechanical systems (MEMS) electrostatic vibratory power generator with over 100 µ W RMS of (root-mean-square) output electric power under 0.03 G RMS (G: the acceleration of gravity) accelerations. The device is made of a silicon-on-insulator (SOI) wafer and is fabricated by silicon micromachining technology. An electret built-in potential is given to the device by electrothermal polarization in silicon oxide using potassium ions. The force factor, which is defined by a proportional coefficient of the output current with respect to the vibration velocity, is 2.34 × 10 - 4 C/m; this large value allows the developed vibration power generator to have a very high power efficiency of 80.7%. We have also demonstrated a charging experiment by using an environmental acceleration waveform with an average amplitude of about 0.03 G RMS taken at a viaduct of a highway, and we obtained 4.8 mJ of electric energy stored in a 44 µ F capacitor in 90 min.

16.
J Mater Sci Mater Med ; 28(1): 4, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27878736

RESUMO

Thin-Film-Transistors Liquid-Crystal Display has become a standard in the field of displays. However, the structure of these devices presents interest not only in that field, but also for biomedical applications. One of the key components, called here TFT substrate, is a glass substrate with a dense and large array of thousands of transparent micro-electrodes that can be considered as a large scale multi-electrode array(s). Multi-electrode array(s) are widely used for in vitro electrical investigations on neurons and brain, allowing excitation, registration, and recording of their activity. However, the range of application of conventional multi-electrode array(s) is usually limited to some tens of cells in a homogeneous cell culture, because of a small area, small number and a low density of the micro-electrodes. TFT substrates do not have these limitations and the authors are currently studying the possibility to use TFT substrates as new tools for in vitro electrical investigation on tissues and organoids. In this respect, experiments to determine the cyto-biocompatibility of TFT substrates with tissues were conducted and are presented in this study. The investigation was performed using an organotypic culture method with explants of brain and liver tissues of chick embryos. The results in term of morphology, cell migration, cell density and adhesion were compared with the results from Thermanox®, a conventional plastic for cell culture, and with polydimethylsiloxane, a hydrophobic silicone. The results with TFT substrates showed similar results as for the Thermanox®, despite the TFT hydrophobicity. TFT substrates have a weak cell adhesion and promote cell migration similarly to Thermanox®. It could be concluded that the TFT substrates are cyto-biocompatible with the two studied organs.


Assuntos
Materiais Biocompatíveis/química , Cristais Líquidos/química , Teste de Materiais/métodos , Técnicas de Cultura de Órgãos , Animais , Encéfalo/metabolismo , Adesão Celular , Movimento Celular , Embrião de Galinha , Meios de Cultura/química , Dimetilpolisiloxanos/química , Eletrodos , Vidro , Fígado/metabolismo , Microfluídica , Nanotecnologia , Neurônios/metabolismo , Polietilenotereftalatos/química , Silicones/química
17.
Opt Express ; 24(12): 12803-11, 2016 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-27410299

RESUMO

Metal-insulator-metal metamaterial thermal emitters strongly radiate at multiple resonant wavelengths. The fundamental mode, whose wavelength is the longest among resonances, is generally utilized for selective emission. In this paper, we show that parasitic modes at shorter wavelengths are suppressed by newly employed densely-tiled resonators, and that the suppression enables quasi-monochromatic thermal emission. The second-order harmonics, which is excited at half the fundamental wavelength in conventional emitters, shifts toward shorter wavelength. The blue-shift reduces the amplitude of the second-order emission by taking a distance from the Wien wavelength. Other parasitic modes are eliminated by the small spacing between resonators. The densely-tiled resonators are fabricated, and the measured emission spectra agree well with numerical simulations. The methodology presented here for the suppression of parasitic modes adds flexibility to metamaterial thermal emitters.

18.
Opt Express ; 22(18): 21326-39, 2014 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-25321511

RESUMO

We demonstrate a reconfigurable metamaterial developed by surface micromachining technique on a low loss quartz substrate for a tunable terahertz filter application. The device implements a reconfigurable RF-MEMS (radio frequency - micro electro mechanical systems) capacitor within a split-ring resonator (SRR). Time-domain spectroscopy confirms that the tunability of the SRR resonance and thus the terahertz transmittance are electrostatically controlled by the RF-MEMS capacitor. Due to the high transparency and low loss of quartz used as a substrate, the device exhibits a high contrast switching performance of 16.5 dB at 480 GHz, which is also supported by the terahertz dynamic modulation measurement results. The device shows promise for tunable transmission terahertz optics.

19.
J Lab Autom ; 19(1): 50-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23797097

RESUMO

To transfer large cargo into mammalian cells, we recently provided a new approach called a photothermal nanoblade. Micron-sized membrane pores generated by the nanoblade are surprisingly well repaired with little cell death, suggesting rapid membrane-resealing dynamics. Here, we report the resealing time of photothermal porated mammalian cell plasma membranes using an electrical impedance sensor. Cell membrane pores were generated by high-speed cavitation bubbles induced by laser pulsing of metallic microdisks on a pair of transparent indium tin oxide electrodes. Electrical responses from the sensor electrodes were obtained with a signal voltage of 500 mV and a frequency at 500 kHz. Real-time impedance measurements show that membrane resealing and impedance recovery take a surprisingly long 1 to 2 min after laser pulsing. A nonrecovering impedance shift is also detected for cells after high-energy laser pulsing. This impedance response is also confirmed by a separate experiment in which thin-film gold electrodes are used to trigger cavitation bubbles for opening transient membrane pores on cells cultured on electrodes. Overall, our study platform provides new insight for micron-sized membrane defect repair dynamics to maintain cell viability.


Assuntos
Membrana Celular/fisiologia , Membrana Celular/efeitos da radiação , Impedância Elétrica , Células Epiteliais/fisiologia , Células Epiteliais/efeitos da radiação , Células HeLa , Temperatura Alta , Humanos , Lasers
20.
Nanotechnology ; 22(35): 355704, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21817783

RESUMO

The plasticity of covalently bonded materials is a subject at the forefront of materials science, bearing on a wide range of technological and fundamental aspects. However, covalent materials fracture in a brittle manner when the deformation exceeds just a few per cent. It is predicted that a macroscopically brittle material like silicon can show nanoscale plasticity. Here we report the exceptional plasticity observed in silicon nanocontacts ('nanobridges') at room temperature using a special experimental setup combining a transmission electron microscope and a microelectromechanical system. When accounting for surface diffusion, we succeeded in elongating the nanocontact into a wire-like structure, with a fivefold increase in volume, up to more than twenty times the original length. Such a large plasticity was caused by the stress-assisted diffusion and the sliding of the intergranular, amorphous-like material among the nanocrystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...