Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chaos ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579152

RESUMO

It is a well-understood fact that the transport of excitations throughout a lattice is intimately governed by the underlying structures. Hence, it is only natural to recognize that the dispersion of information also has to depend on the lattice geometry. In the present work, we demonstrate that two-dimensional lattices described by the Bose-Hubbard model exhibit information scrambling for systems as little as two hexagons. However, we also find that the out-of-time-ordered correlator (OTOC) shows the exponential decay characteristic for quantum chaos only for a judicious choice of local observables. More generally, the OTOC is better described by Gaussian-exponential convolutions, which alludes to the close similarity of information scrambling and decoherence theory.

2.
Entropy (Basel) ; 25(12)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38136453

RESUMO

Quantum Darwinism explains the emergence of classical objectivity within a quantum universe. However, to date, most research on quantum Darwinism has focused on specific models and their stationary properties. To further our understanding of the quantum-to-classical transition, it appears desirable to identify the general criteria a Hamiltonian has to fulfill to support classical reality. To this end, we categorize all N-qubit models with two-body interactions, and show that only those with separable interaction of the system and environment can support a pointer basis. We further demonstrate that "perfect" quantum Darwinism can only emerge if there are no intra-environmental interactions. Our analysis is complemented by solving the ensuing dynamics. We find that in systems exhibiting information scrambling, the dynamical emergence of classical objectivity directly competes with the non-local spread of quantum correlations. Our rigorous findings are illustrated through the numerical analysis of four representative models.

3.
Phys Rev Lett ; 129(1): 010401, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35841578

RESUMO

We establish bounds on quantum correlations in many-body systems. They reveal what sort of information about a quantum system can be simultaneously recorded in different parts of its environment. Specifically, independent agents who monitor environment fragments can eavesdrop only on amplified and redundantly disseminated-hence, effectively classical-information about the decoherence-resistant pointer observable. We also show that the emergence of classical objectivity is signaled by a distinctive scaling of the conditional mutual information, bypassing hard numerical optimizations. Our results validate the core idea of quantum Darwinism: objective classical reality does not need to be postulated and is not accidental, but rather a compelling emergent feature of quantum theory that otherwise-in the absence of decoherence and amplification-leads to "quantum weirdness." In particular, a lack of consensus between agents that access environment fragments is bounded by the information deficit, a measure of the incompleteness of the information about the system.

4.
Phys Rev Lett ; 128(1): 010401, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35061495

RESUMO

"How much information about a system S can one extract from a fragment F of the environment E that decohered it?" is the central question of Quantum Darwinism. To date, most answers relied on the quantum mutual information of SF, or on the Holevo bound on the channel capacity of F to communicate the classical information encoded in S. These are reasonable upper bounds on what is really needed but much harder to calculate-the accessible information in the fragment F about S. We consider a model based on imperfect c-not gates where all the above can be computed, and discuss its implications for the emergence of objective classical reality. We find that all relevant quantities, such as the quantum mutual information as well as various bounds on the accessible information exhibit similar behavior. In the regime relevant for the emergence of objective classical reality this includes scaling independent of the quality of the imperfect c-not gates or the size of E, and even nearly independent of the initial state of S.

5.
Entropy (Basel) ; 23(11)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34828177

RESUMO

Envariance is a symmetry exhibited by correlated quantum systems. Inspired by this "quantum fact of life," we propose a novel method for shortcuts to adiabaticity, which enables the system to evolve through the adiabatic manifold at all times, solely by controlling the environment. As the main results, we construct the unique form of the driving on the environment that enables such dynamics, for a family of composite states of arbitrary dimension. We compare the cost of this environment-assisted technique with that of counterdiabatic driving, and we illustrate our results for a two-qubit model.

6.
Entropy (Basel) ; 23(7)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34356429

RESUMO

In classical thermodynamics the Euler relation is an expression for the internal energy as a sum of the products of canonical pairs of extensive and intensive variables. For quantum systems the situation is more intricate, since one has to account for the effects of the measurement back action. To this end, we derive a quantum analog of the Euler relation, which is governed by the information retrieved by local quantum measurements. The validity of the relation is demonstrated for the collective dissipation model, where we find that thermodynamic behavior is exhibited in the weak-coupling regime.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...