Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Food Sci Technol ; 56(12): 5492-5499, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31749497

RESUMO

This study evaluated the anti-inflammatory and antioxidant properties of seeds aglycone extracts from Lepidium sativum (LS) and Eruca vesicaria (EV) Linn., on oxidative damages in vitro and on neutrophil nitro-oxidative functions. The results showed that LS and EV aglycone extracts attenuated liver microsomal lipids and proteins oxidation through a potent antioxidant effect as attested by the dose dependent quenching of DPPH radical scavenging activity. LS and EV aglycone extracts inhibited dose dependently the production of superoxide anion by BALB/c mice-derived peritoneal neutrophils, whereas they slightly enhanced exocytosis of myeloperoxidase (MPO), a marker of azurophilic granules. Interestingly, only LS replenished glutathione (GSH) and nitric oxide levels, indicating a fine differential effect. This study highlighted the subtle oxidative and antioxidant capacity of LS and EV seeds aglycone extracts. These health promoting compounds could be used to finely modulate critical events involved in microbial infection, inflammation and nitro-oxidative stress.

2.
J Appl Biomed ; 17(3): 175-183, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34907699

RESUMO

This study investigates serum redox status and adenosine catabolism markers in relation to tumor and angiogenesis, in patients with gallbladder carcinoma (GBC). The level of adenosine deaminase (ADA) and xanthine oxidase (XO) activities, nitrites (NO2-), glutathione (GSH) and malondialdehyde (MDA) were measured in sera of 40 GBC patients and 40 healthy donors. In parallel, 15 tumors at TNM stage IV were scored for CD34 expression and microvessel density (MVD). The results showed that XO and ADA activities, nitrites and MDA levels enhanced by 1.26 (p < 0.01), 2.69, 2.0, and 3.2-fold (p < 0.001), respectively, while those of GSH decreased by 44.6% (p < 0.001). According to receiver operating characteristic (ROC) curve, the optimal cut-off for XO, ADA, MDA, GSH and nitrites were 5.41U/l, 17.02 U/l, 3.72 µM, 36.91 µM and 21.21 µM, respectively. Spearman correlation revealed that ADA activity correlated to nitrites levels (r = 0.3419, p < 0.05) and XO activity (r = 0.5487, p < 0.001). Multivariate binary logistic regression analysis revealed that MDA (OR = 5.78, p < 0.05), ADA (OR = 1.28, p < 0.001) and XO (OR = 2.81, p < 0.05) correlated positively to GBC. CD34 was up expressed in 73.3% of tumors at intermediate to high levels. Multiple regression analysis showed that ADA affected MVD (r = 0.604, p < 0.01). The results suggest that high MDA/GSH ratio is a potential biomarker of GBC. In addition, the oxidative adenosine catabolism indicated that active purine salvage pathway could support tumor progression by sustaining angiogenesis.

3.
Int Immunopharmacol ; 25(1): 1-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25601495

RESUMO

Leishmania major is an obligate intracellular parasite hosted by phagocytes, including dendritic cells (DCs). Lysophosphatidylcholine (LPC) a pro-oxidant by-product of phospholipase A2 activity can modulate the maturation and function of DCs. However, little is known about its role in L. major infection. This study examined the effects of LPC and lipopolysaccharide (LPS) in BALB/c mouse-derived DC infection by L. major promastigotes, in vitro. Our results showed early divergent effects of LPS and LPC, which lasted up to 24h. In contrast to LPS, LPC worsened DC infection by reversing the immune balance IL-10 vs. TNF-α and IL-6, and inducing a sharp down regulation of CD40 and iNOsynthase activity. In addition, LPC potentiated xanthine oxidase stress, the production of kynurenine by indoleamine 2,3 dioxygenase (IDO), and arginase1 activity in the expense of iNOsynthase. Taken together, our results highlight some biochemical events bypassing the protective Th1 response. They suggest that LPC could facilitate the proliferation of this obligate intracellular parasite by neutralizing oxidative and nitrosative stresses and sustaining both IDO and arginase1 activities.


Assuntos
Arginase/metabolismo , Células Dendríticas/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interleucina-10/metabolismo , Leishmania major/imunologia , Leishmaniose Cutânea/imunologia , Lisofosfatidilcolinas/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Células Dendríticas/microbiologia , Progressão da Doença , Lipopolissacarídeos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo , Equilíbrio Th1-Th2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...