Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(2)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36829899

RESUMO

Metabolic syndrome (METS) is a complex disorder that predisposes an affected person to an increased risk of diabetes and cardiovascular disease. Bitter Asteraceae plants contain several compounds active against METS that can be used as an alternative preventive therapy. Our previous work showed that a natural chicory extract (NCRAE) containing chicoric acid (CRA) and chlorogenic acid (CGA) in a molar ratio of 70/30 exhibited an antioxidant, insulin sensitization and anti-hyperglycemic effect. The present study was designed to evaluate the preventive effects of an NCRAE-like extract against METS in a complementary natural pharmacotherapeutic approach. An original Asteraceae infused drink containing the NCRAE CRA/CGA molecular ratio equivalent was prepared from dandelion (Taraxacum officinale L.) and burdock (Arctium lappa L.). The anti-METS effect of this drink was evaluated on the fructose-rat model for 8 weeks. Body weight, blood biochemistry, hepatic glucose-6-phosphatase, arterial blood pressure glucose and insulin tolerance were evaluated after 8 weeks. Our results show that daily oral intake of the Asteraceae infused drink led to a reduction of body weight gain, hyperglycemia, hypertriglyceridemia, insulin resistance and hypertension. Moreover, rat-by-rat analysis of the insulinemia measures revealed two types of responders. One sub-group of subjects demonstrated normal insulinemia and the other subgroup demonstrated hyperinsulinemia. This hyperinsulinemia, associated with the inhibition of the glucose-6-phosphatase activity in the liver tissue, may suggest an insulin release caused by CGA. The present study suggests that this original infusion of dandelion leaves and burdock roots may be used as an adjuvant therapy to prevent metabolic syndrome.

2.
Antioxidants (Basel) ; 10(10)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34679753

RESUMO

The aim of our study was to identify novel molecules able to induce an adaptative response against oxidative stress during the first stages of metabolic syndrome. A cellular survival in vitro test against H2O2-based test was applied after pretreatment with various natural bitter Asteraceae extracts. This screening revealed potent protection from burdock leaf extract. Using chromatography and LC-MS-RMN, we then isolated and identified an original sesquiterpene lactone bioactive molecule: the Xanthatin-13-(pyrrolidine-2-carboxylic acid) (XPc). A real-time RT-qPCR experiment was carried out on three essential genes involved in oxidative stress protection: GPx, SOD, and G6PD. In presence of XPc, an over-expression of the G6PD gene was recorded, whereas no modification of the two others genes could be observed. A biochemical docking approach demonstrated that XPc had a high probability to directly interact with G6PD at different positions. One of the most probable docking sites corresponds precisely to the binding site of AG1, known to stabilize the G6PD dimeric form and enhance its activity. In conclusion, this novel sesquiterpene lactone XPc might be a promising prophylactic bioactive agent against oxidative stress and inflammation in chronic diseases such as metabolic syndrome or type 2 diabetes.

3.
Molecules ; 26(18)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34577036

RESUMO

Plant bioactive extracts represent a major resource for identifying drugs and adjuvant therapy for type 2 diabetes. To promote early screening of plants' antidiabetic potential, we designed a four in vitro tests strategy to anticipate in vivo bioactivity. Two antidiabetic plants were studied: Ocimum gratissimum L. (Oc) leaf extract and Musanga cecropoides R. Br. ex Tedlie (Mu) stem bark extract. Chemical compositions were analyzed by LCMS and HPLC. Antidiabetic properties were measured based on (1) INS-1 cells for insulin secretion, (2) L6 myoblast cells for insulin sensitization (Glut-4 translocation), (3) L6 myoblast cells for protection against hydrogen peroxide (H2O2) oxidative stress (cell mortality), and (4) liver microsomial fraction for glucose-6-phosphastase activity (G6P). Oc extract increased insulin secretion and insulin sensitivity, whereas it decreased oxidative stress-induced cell mortality and G6P activity. Mu extract decreased insulin secretion and had no effect on insulin sensitivity or G6P activity, but it increased oxidative stress-induced cell mortality. Results were compared with NCRAE, an antidiabetic plant extract used as reference, previously characterized and reported with increased insulin secretion and insulin sensitivity, protection against oxidative stress, and decreased G6P activity. The proposed set of four in vitro tests combined with chemical analysis provided insight into the interest in rapid early screening of plant extract antidiabetic potential to anticipate pharmaco-toxicological in vivo effects.


Assuntos
Ácidos Cafeicos , Hipoglicemiantes , Ocimum , Resistência à Insulina , Casca de Planta , Extratos Vegetais
4.
Food Funct ; 11(10): 9263-9271, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33047760

RESUMO

Citrus fruits are known for their beneficial health effects associated with the prevention of metabolic syndrome/type 2 diabetes that is mainly attributed to flavonoids. Few investigations have reported the potential anti-diabetic effects of retinoids from the bioconversion of ß-cryptoxanthin (bcx), a citrus carotenoid. Therefore, the present study explored the anti-diabetic effect of a citrus functional food, obtained by membrane eco-technology of a citrus clementina juice, especially enriched in bcx but also in flavonoids and pectin. We assessed the in vivo effect of citrus bcx absorption and its bioconversion into retinoids in metabolic syndrome/type 2 diabetic fructose rats. Fructose-fed rats were used as a prediabetic control, and a prediabetic group was treated with the citrus concentrate for 8 weeks. The citrus-based food treatment improved glucose tolerance, dyslipidemia and blood pressure, in prediabetic rats. Although these effects were in part due to the synergy between enriched phytonutrients (bcx, hesperidin, pectin) of the citrus matrix, the role of bcx and its bioconversion into retinoids were highlighted. We showed that prediabetic rats absorbed less bcx and the bioconversion was less efficient. Bcx from citrus-based food was able to restore vitamin A status in prediabetic rats suggesting that the absorption/bioconversion of bcx may have a key role in improvement of metabolic syndrome/type 2 diabetes.


Assuntos
beta-Criptoxantina/metabolismo , Citrus/metabolismo , Diabetes Mellitus Tipo 2/prevenção & controle , Síndrome Metabólica/prevenção & controle , Retinoides/administração & dosagem , Animais , beta-Criptoxantina/análise , Citrus/química , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Alimento Funcional/análise , Glucose/metabolismo , Humanos , Masculino , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , Ratos
5.
Org Biomol Chem ; 18(5): 931-940, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31922157

RESUMO

The design of glycogen phosphorylase (GP) inhibitors targeting the catalytic site of the enzyme is a promising strategy for a better control of hyperglycaemia in the context of type 2 diabetes. Glucopyranosylidene-spiro-heterocycles have been demonstrated as potent GP inhibitors, and more specifically spiro-oxathiazoles. A new synthetic route has now been elaborated through 1,3-dipolar cycloaddition of an aryl nitrile oxide to a glucono-thionolactone affording in one step the spiro-oxathiazole moiety. The thionolactone was obtained from the thermal rearrangement of a thiosulfinate precursor according to Fairbanks' protocols, although with a revisited outcome and also rationalised with DFT calculations. The 2-naphthyl substituted glucose-based spiro-oxathiazole 5h, identified as one of the most potent GP inhibitors (Ki = 160 nM against RMGPb) could be produced on the gram-scale from this strategy. Further evaluation in vitro using rat and human hepatocytes demonstrated that compound 5h is a anti-hyperglycaemic drug candidates performing slightly better than DAB used as a positive control. Investigation in Zucker fa/fa rat model in acute and subchronic assays further confirmed the potency of compound 5h since it lowered blood glucose levels by ∼36% at 30 mg kg-1 and ∼43% at 60 mg kg-1. The present study is one of the few in vivo investigations for glucose-based GP inhibitors and provides data in animal models for such drug candidates.


Assuntos
Inibidores Enzimáticos/farmacologia , Glucose/metabolismo , Glicogênio Fosforilase/antagonistas & inibidores , Hipoglicemiantes/farmacologia , Compostos de Espiro/farmacologia , Tiazóis/farmacologia , Animais , Glicemia/metabolismo , Ciclização , Teoria da Densidade Funcional , Glicogênio/metabolismo , Glicogênio Fosforilase/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Hipoglicemiantes/síntese química , Hipoglicemiantes/química , Concentração Inibidora 50 , Cinética , Lactonas/síntese química , Lactonas/química , Oxirredução , Ratos Zucker , Compostos de Espiro/síntese química , Compostos de Espiro/química , Estereoisomerismo , Temperatura , Tiazóis/síntese química , Tiazóis/química
6.
J Ethnopharmacol ; 215: 241-248, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29325917

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Chicory (Cichorium intybus L.) is an indigenous vegetable widely cultivated in Europe, America and Asia. In ancient times, the leaves, flowers, seeds, and roots have been used as a wealth of health benefits including its tonic effects, the ability to ease digestive problems and to detoxify liver. In Indian traditional therapy, chicory was known to possess antidiabetic effect. In the traditional medicine of Bulgaria and Italy, chicory was used as hypoglycemic decoctions. AIMS OF THE STUDIES: We wanted to obtain the complete chemical composition of the natural chicoric acid extract (NCRAE), a chicory root extract rich in chicoric acid, which previously showed its glucose tolerance effect in normal rats. To investigate if the whole NCRAE is required to be effective, we performed a comparative in vivo experiment on STZ diabetic rats treated either with NCRAE or a mixture composed of the two major compounds of NCRAE. MATERIALS AND METHODS: LC-MS method has been used to analyze the exhaustive composition of NCRAE: we have determined that chicoric acid and chlorogenic acid represented 83.8% of NCRAE. So, we have prepared a solution mixture of chicoric acid and chlorogenic acid named SCCAM, in order to compare in vivo the antidiabetic effects of this last and NCRAE in streptozotocin diabetic rats. In vitro experiments were performed on L6 cell line both for glucose uptake and for the protective effect against H2O2 oxidative stress. Also, we have evaluated DPPH and ORAC (Oxygen Radical Absorbance Capacity) antioxidative capacities of the two compositions. RESULTS: The LC-MS analysis confirmed the high abundance of chicoric acid (64.2%) in NCRAE and a second part of NCRAE is composed of caffeoylquinic acids (CQAs) at 19.6% with among them the chlorogenic acid. This result has permitted us to prepare a mixture of synthetic L-chicoric acid (70%) and synthetic chlorogenic acid (30%): the solution is designated SCCAM. Our results showed that both NCRAE and SCCAM are able to improve a glucose tolerance in STZ diabetic rats after a subchronic administration of seven days. Alone NCRAE allows to significantly decrease the basal hyperglycemia after six days of treatment. To explain these difference of effects between NCRAE and SCCAM, we have compared their in vitro effects on the L6 muscle cell line both for the insulin sensitizing effect and for their protective action in pretreatment against H2O2. We have also compared their antioxidant capacities. In conclusion, we demonstrated that NCRAE, a natural extract of chicory (Cichorium intybus) rich in CRA and CQAs improves glucose tolerance and reduces the basal hyperglycemia in STZ diabetic rats.


Assuntos
Ácidos Cafeicos/farmacologia , Ácido Clorogênico/farmacologia , Cichorium intybus/química , Diabetes Mellitus Experimental/tratamento farmacológico , Resistência à Insulina , Extratos Vegetais/farmacologia , Succinatos/farmacologia , Animais , Antioxidantes , Ácidos Cafeicos/química , Ácido Clorogênico/química , Hipoglicemiantes/farmacologia , Insulina , Medicina Tradicional , Extratos Vegetais/química , Folhas de Planta/química , Ratos , Succinatos/química
7.
Eur J Med Chem ; 108: 444-454, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26708111

RESUMO

Glycogen phosphorylase (GP) is a target for the treatment of hyperglycaemia in the context of type 2 diabetes. This enzyme is responsible for the depolymerization of glycogen into glucose thereby affecting the levels of glucose in the blood stream. Twelve new d-glucopyranosylidene-spiro-isoxazolines have been prepared from O-peracylated exo-D-glucals by regio- and stereoselective 1,3-dipolar cycloaddition of nitrile oxides generated in situ by treatment of the corresponding oximes with bleach. This mild and direct procedure appeared to be applicable to a broad range of substrates. The corresponding O-unprotected spiro-isoxazolines were evaluated as glycogen phosphorylase (GP) inhibitors and exhibited IC50 values ranging from 1 to 800 µM. Selected inhibitors were further evaluated in vitro using rat and human hepatocytes and exhibited significant inhibitory properties in the primary cell culture. Interestingly, when tested with human hepatocytes, the tetra-O-acetylated spiro-isoxazoline bearing a 2-naphthyl residue showed a much lower IC50 value (2.5 µM), compared to that of the O-unprotected analog (19.95 µM). The most promising compounds were investigated in Zucker fa/fa rat model in acute and sub-chronic assays and decreased hepatic glucose production, which is known to be elevated in type 2 diabetes. This indicates that glucose-based spiro-isoxazolines can be considered as anti-hyperglycemic agents in the context of type 2 diabetes.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Glucose/análogos & derivados , Glicogênio Fosforilase/antagonistas & inibidores , Hipoglicemiantes/farmacologia , Animais , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Tipo 2/enzimologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Glucose/química , Glucose/farmacologia , Glicogênio Fosforilase/metabolismo , Hipoglicemiantes/síntese química , Hipoglicemiantes/química , Isoxazóis/síntese química , Isoxazóis/química , Isoxazóis/farmacologia , Estrutura Molecular , Ratos , Ratos Zucker , Compostos de Espiro/síntese química , Compostos de Espiro/química , Compostos de Espiro/farmacologia , Relação Estrutura-Atividade
8.
J Agric Food Chem ; 62(31): 7738-45, 2014 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-24933284

RESUMO

In the present study, we obtained a dried burdock root extract (DBRE) rich in caffeoylquinic acids derivatives. We performed the chemical characterization of DBRE and explored its antihyperglycemic potential in both in vitro and in vivo experiments. Chemical analysis of DBRE using LC-MS and GC-MS revealed the presence of a great majority of dicaffeoylquinic acid derivatives (75.4%) of which 1,5-di-O-caffeoyl-4-O-maloylquinic acid represents 44% of the extract. In the in vitro experiments, DBRE is able to increase glucose uptake in cultured L6 myocytes and to decrease glucagon-induced glucose output from rat isolated hepatocytes together with a reduction of hepatic glucose 6-phosphatase activity. DBRE did not increase insulin secretion in the INS-1 pancreatic ß-cell line. In vivo, DBRE improves glucose tolerance both after intraperitoneal and oral subchronic administration. In conclusion, our data demonstrate that DBRE constitutes an original set of caffeoylquinic acid derivatives displaying antihyperglycemic properties.


Assuntos
Arctium/química , Hipoglicemiantes/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Animais , Linhagem Celular , Glucagon/farmacologia , Glucose/metabolismo , Glucose-6-Fosfatase/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Insulina/metabolismo , Secreção de Insulina , Masculino , Células Musculares/efeitos dos fármacos , Células Musculares/metabolismo , Ácido Quínico/análogos & derivados , Ácido Quínico/análise , Ratos , Ratos Wistar
9.
Diabetologia ; 57(1): 177-86, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24186360

RESUMO

AIMS/HYPOTHESIS: Insulin-mediated glucose transport and utilisation are decreased in skeletal muscle from type 2 diabetic and glucose-intolerant individuals because of alterations in insulin receptor signalling, GLUT4 translocation to the plasma membrane and microvascular blood flow. Catalytic activity of the muscle-specific isoform of neuronal nitric oxide synthase (nNOS) also participates in the regulation of glucose transport and appears to be decreased in a relevant animal model of drastic insulin resistance, the obese Zucker fa/fa rat. Our objective was to determine the molecular mechanisms involved in this defect. METHODS: Isolated rat muscles and primary cultures of myocytes were used for western blot analysis of protein expression, immunohistochemistry, glucose uptake measurements and GLUT4 translocation assays. RESULTS: nNOS expression was reduced in skeletal muscle from fa/fa rats. This was caused by increased ubiquitination of the enzyme and subsequent degradation by the ubiquitin proteasome pathway. The degradation occurred through a greater interaction of nNOS with the chaperone heat-shock protein 70 and the co-chaperone, carboxyl terminus of Hsc70-interacting protein (CHIP). In addition, an alteration in nNOS sarcolemmal localisation was observed. We confirmed the implication of nNOS breakdown in defective insulin-induced glucose transport by demonstrating that blockade of proteasomal degradation or overexpression of nNOS improved basal and/or insulin-stimulated glucose uptake and GLUT4 translocation in primary cultures of insulin-resistant myocytes. CONCLUSIONS/INTERPRETATION: Recovery of nNOS in insulin-resistant muscles should be considered a potential new approach to address insulin resistance.


Assuntos
Glucose/metabolismo , Resistência à Insulina/fisiologia , Músculo Esquelético/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Western Blotting , Células Cultivadas , Transportador de Glucose Tipo 4/metabolismo , Imunoprecipitação , Masculino , Células Musculares/metabolismo , Óxido Nítrico Sintase Tipo I/genética , Ratos , Ratos Zucker , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
J Ethnopharmacol ; 150(2): 755-60, 2013 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-24126061

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In Eurasia folk medicine, roots of chicory (Cichorium intybus L.) have been reported to exert antidiabetic benefits. In vitro, a natural chicoric acid extract (NCRAE) from Cichorium intybus root has been shown to increase insulin secretion by pancreatic ß-cells and glucose uptake by muscle cells. MATERIALS AND METHODS: In vitro experiments were designed to compare the effects of two hydroxycinnamic acids, caffeic and ferulic acids, to those obtained with NCRAE (50 and 100 µg.mL(-1)) on the three major tissues implicated in glycemic regulation (pancreas, muscle and liver). In vivo experiments were performed in Wistar rats submitted to a daily intraperitoneal injection of NCRAE (3, 15 or 30 mg kg(-1)) for 4 days. On the fourth day, an intraperitoneal glucose tolerance test (IPGTT; 1 g kg(-1)) was carried out. RESULTS: Our results show that the three compounds we used are able each to induce an original response. Caffeic acid mainly promotes a decrease in hepatic glycogenolysis. Ferulic acid elicits a clear increase of insulin release and a reduction of hepatic glycogenolysis. However, this compound induces an inhibition of muscle glucose uptake. NCRAE provokes an increase of insulin release and glucose uptake without any effect on hepatic glycogenolysis. We could also show that none of these compounds implicates hepatic glucose 6-phosphatase in contrast to chlorogenic acid, known as an inhibitor of glucose 6-phosphatase and which is able to decrease glucose output from hepatocytes. Our results point out that NCRAE is able to decrease blood glucose without any effect hepatic effect. Our in vivo experiments bring evidence that 4 daily IP administrations of NCRAE improve IP glucose tolerance in a dose-dependent manner and mainly via an insulin sensitizing effect. CONCLUSIONS: We conclude that NCRAE presents an antihyperglycemic effect essentially due to a peripheral effect on muscle glucose uptake.


Assuntos
Ácidos Cafeicos/farmacologia , Cichorium intybus , Ácidos Cumáricos/farmacologia , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Glucose/metabolismo , Glucose-6-Fosfatase/metabolismo , Glicogênio/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Insulina/metabolismo , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Músculos/metabolismo , Ratos , Ratos Wistar , Succinatos
11.
Biochem Biophys Res Commun ; 377(1): 131-5, 2008 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-18834859

RESUMO

Caffeic acid and chlorogenic acid (CGA), a mono-caffeoyl ester, have been described as potential antidiabetic agents. Using in vitro studies, we report the effects of a dicaffeoyl ester, chicoric acid (CRA) purified from Cichorium intybus, on glucose uptake and insulin secretion. Our results show that CRA and CGA increased glucose uptake in L6 muscular cells, an effect only observed in the presence of stimulating concentrations of insulin. Moreover, we found that both CRA and CGA were able to stimulate insulin secretion from the INS-1E insulin-secreting cell line and rat islets of Langerhans. In the later case, the effect of CRA is only observed in the presence of subnormal glucose levels. Patch clamps studies show that the mechanism of CRA and CGA was different from that of sulfonylureas, as they did not close K(ATP) channels. Chicoric acid is a new potential antidiabetic agent carrying both insulin sensitizing and insulin-secreting properties.


Assuntos
Ácidos Cafeicos/farmacologia , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Succinatos/farmacologia , Animais , Transporte Biológico/efeitos dos fármacos , Linhagem Celular , Cichorium intybus/química , Ácido Clorogênico/farmacologia , Secreção de Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Canais KATP/antagonistas & inibidores , Células Musculares/efeitos dos fármacos , Células Musculares/metabolismo , Ratos , Xenopus
12.
J Soc Biol ; 201(2): 127-31, 2007.
Artigo em Francês | MEDLINE | ID: mdl-17978744

RESUMO

There are over a hundred chemical substances that have been derived from plants for use as drugs and medicines; many more await and medicinal plants are the target of all the attention. The structural diversity of natural products still surpasses that from synthetic compounds and is far beyond any imagination of experts in the field. For many pharmaceutical companies, it is a good argument to investigate natural compounds. Many plants with antidiabetic virtues are known in traditional medicine over the world. The CPID (Centre de Pharmacologie et Innovation dans le Diabète) proposes a technology program to purify new natural antidiabetic substances. A large antidiabetic plant library is constructed for a high-throughput pharmacological screening with cell cultures.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Humanos , Hipoglicemiantes/síntese química , Hipoglicemiantes/classificação , Insulina/uso terapêutico , Farmacologia , Extratos Vegetais/uso terapêutico , Plantas Medicinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...