Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(25): e2322475121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38857404

RESUMO

Low temperatures and cooling agents like menthol induce cold sensation by activating the peripheral cold receptors TRPM8 and TRPA1, cation channels belonging to the TRP channel family, while the reduction of potassium currents provides an additional and/or synergistic mechanism of cold sensation. Despite extensive studies over the past decades to identify the molecular receptors that mediate thermosensation, cold sensation is still not fully understood and many cold-sensitive peripheral neurons do not express the well-established cold sensor TRPM8. We found that the voltage-gated potassium channel KCNQ1 (Kv7.1), which is defective in cardiac LQT1 syndrome, is, in addition to its known function in the heart, a highly relevant and sex-specific sensor of moderately cold temperatures. We found that KCNQ1 is expressed in skin and dorsal root ganglion neurons, is sensitive to menthol and cooling agents, and is highly sensitive to moderately cold temperatures, in a temperature range at which TRPM8 is not thermosensitive. C-fiber recordings from KCNQ1-/- mice displayed altered action potential firing properties. Strikingly, only male KCNQ1-/- mice showed substantial deficits in cold avoidance at moderately cold temperatures, with a strength of the phenotype similar to that observed in TRPM8-/- animals. While sex-dependent differences in thermal sensitivity have been well documented in humans and mice, KCNQ1 is the first gene reported to play a role in sex-specific temperature sensation. Moreover, we propose that KCNQ1, together with TRPM8, is a key instrumentalist that orchestrates the range and intensity of cold sensation.


Assuntos
Temperatura Baixa , Canal de Potássio KCNQ1 , Animais , Masculino , Feminino , Camundongos , Canal de Potássio KCNQ1/metabolismo , Canal de Potássio KCNQ1/genética , Camundongos Knockout , Gânglios Espinais/metabolismo , Sensação Térmica/fisiologia , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPM/genética , Camundongos Endogâmicos C57BL , Potenciais de Ação/fisiologia , Caracteres Sexuais , Mentol/farmacologia
2.
Sci Adv ; 7(13)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33771873

RESUMO

Teeth are composed of many tissues, covered by an inflexible and obdurate enamel. Unlike most other tissues, teeth become extremely cold sensitive when inflamed. The mechanisms of this cold sensation are not understood. Here, we clarify the molecular and cellular components of the dental cold sensing system and show that sensory transduction of cold stimuli in teeth requires odontoblasts. TRPC5 is a cold sensor in healthy teeth and, with TRPA1, is sufficient for cold sensing. The odontoblast appears as the direct site of TRPC5 cold transduction and provides a mechanism for prolonged cold sensing via TRPC5's relative sensitivity to intracellular calcium and lack of desensitization. Our data provide concrete functional evidence that equipping odontoblasts with the cold-sensor TRPC5 expands traditional odontoblast functions and renders it a previously unknown integral cellular component of the dental cold sensing system.

3.
J Gen Physiol ; 150(8): 1125-1144, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-29970412

RESUMO

Damage-sensing nociceptors in the skin provide an indispensable protective function thanks to their specialized ability to detect and transmit hot temperatures that would block or inflict irreversible damage in other mammalian neurons. Here we show that the exceptional capacity of skin C-fiber nociceptors to encode noxiously hot temperatures depends on two tetrodotoxin (TTX)-resistant sodium channel α-subunits: NaV1.8 and NaV1.9. We demonstrate that NaV1.9, which is commonly considered an amplifier of subthreshold depolarizations at 20°C, undergoes a large gain of function when temperatures rise to the pain threshold. We also show that this gain of function renders NaV1.9 capable of generating action potentials with a clear inflection point and positive overshoot. In the skin, heat-resistant nociceptors appear as two distinct types with unique and possibly specialized features: one is blocked by TTX and relies on NaV1.9, and the second type is insensitive to TTX and composed of both NaV1.8 and NaV1.9. Independent of rapidly gated TTX-sensitive NaV channels that form the action potential at pain threshold, NaV1.8 is required in all heat-resistant nociceptors to encode temperatures higher than ∼46°C, whereas NaV1.9 is crucial for shaping the action potential upstroke and keeping the NaV1.8 voltage threshold within reach.


Assuntos
Temperatura Alta , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.9/metabolismo , Nociceptores/metabolismo , Potenciais de Ação , Animais , Linhagem Celular , Evolução Molecular , Técnicas In Vitro , Camundongos Endogâmicos C57BL , Limiar da Dor , Técnicas de Patch-Clamp , Pele
4.
Mar Drugs ; 15(9)2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28867800

RESUMO

Ciguatoxins (CTXs) are marine toxins that cause ciguatera fish poisoning, a debilitating disease dominated by sensory and neurological disturbances that include cold allodynia and various painful symptoms as well as long-lasting pruritus. Although CTXs are known as the most potent mammalian sodium channel activator toxins, the etiology of many of its neurosensory symptoms remains unresolved. We recently described that local application of 1 nM Pacific Ciguatoxin-1 (P-CTX-1) into the skin of human subjects induces a long-lasting, painful axon reflex flare and that CTXs are particularly effective in releasing calcitonin-gene related peptide (CGRP) from nerve terminals. In this study, we used mouse and rat skin preparations and enzyme-linked immunosorbent assays (ELISA) to study the molecular mechanism by which P-CTX-1 induces CGRP release. We show that P-CTX-1 induces CGRP release more effectively in mouse as compared to rat skin, exhibiting EC50 concentrations in the low nanomolar range. P-CTX-1-induced CGRP release from skin is dependent on extracellular calcium and sodium, but independent from the activation of various thermosensory transient receptor potential (TRP) ion channels. In contrast, lidocaine and tetrodotoxin (TTX) reduce CGRP release by 53-75%, with the remaining fraction involving L-type and T-type voltage-gated calcium channels (VGCC). Using transgenic mice, we revealed that the TTX-resistant voltage-gated sodium channel (VGSC) NaV1.9, but not NaV1.8 or NaV1.7 alone and the combined activation of the TTX-sensitive VGSC subtypes NaV1.7 and NaV1.1 carry the largest part of the P-CTX-1-caused CGRP release of 42% and 34%, respectively. Given the contribution of CGRP to nociceptive and itch sensing pathways, our findings contribute to a better understanding of sensory symptoms of acute and chronic ciguatera that may help in the identification of potential therapeutics.


Assuntos
Ciguatoxinas/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.1/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.7/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.9/efeitos dos fármacos , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/efeitos dos fármacos , Animais , Peptídeo Relacionado com Gene de Calcitonina/efeitos dos fármacos , Cálcio/metabolismo , Ciguatera/metabolismo , Ciguatoxinas/química , Ensaio de Imunoadsorção Enzimática , Humanos , Hiperalgesia/induzido quimicamente , Lidocaína/farmacologia , Masculino , Toxinas Marinhas/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Ratos , Tetrodotoxina/farmacologia
5.
Front Mol Neurosci ; 10: 209, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28713241

RESUMO

Previous research identified TRPM8 and TRPA1 cold transducers with separate functions, one being functional in the non-noxious range and the second one being a nociceptive transducer. TRPM8-deficient mice present overt deficits in the detection of environmental cool, but not a lack of cold avoidance and TRPA1-deficient mice show clear deficits in some cold nocifensive assays. The extent of TRPA1's contribution to cold sensing in vivo is still unclear, because mice lacking both TRPM8 and TRPA1 (DKO) were described with unchanged cold avoidance from TRPM8-/- based on a two-temperature-choice assay and by c-fos measurement. The present study was designed to differentiate how much TRPM8 alone and combined TRPA1 and TRPM8 contribute to cold sensing. We analyzed behavior in the thermal ring track assay adjusted between 30 and 5°C and found a large reduction in cold avoidance of the double knockout mice as compared to the TRPM8-deficient mice. We also revisited skin-nerve recordings from saphenous-nerve skin preparations with regard to nociceptors and thermoreceptors. We compared the frequency and characteristics of the cold responses of TRPM8-expressing and TRPM8-negative C-fiber nociceptors in C57BL/6J mice with nociceptors of TRPM8-deficient and DKO mice and found that TRPM8 enables nociceptors to encode cold temperatures with higher firing rates and larger responses with sustained, static component. In TRPM8-/-, C-fiber cold nociceptors were markedly reduced and appeared further reduced in DKO. Nevertheless, the remaining cold responses in both knockout strains were similar in their characteristics and they were indifferent from the TRPM8-negative cold responses found in C57BL/6J mice. TRPM8 had a comparably essential role for encoding cold in thermoreceptors and lack of TRPM8 reduced response magnitude, peak and mean firing rates and the incidence of thermoreceptors. The encoding deficits were similar in the DKO strain. Our data illustrate that lack of TRPA1 in TRPM8-deficient mice results in a disproportionately large reduction in cold avoidance behavior and also affects the incidence of cold encoding fiber types. Presumably TRPA1 compensates for lack of TRPM8 to a certain extent and both channels cooperate to cover the entire cold temperature range, making cold-temperature encoding by TRPA1-although less powerful-synergistic to TRPM8.

6.
Pain ; 157(11): 2504-2516, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27434506

RESUMO

Crotalphine is a structural analogue to a novel analgesic peptide that was first identified in the crude venom from the South American rattlesnake Crotalus durissus terrificus. Although crotalphine's analgesic effect is well established, its direct mechanism of action remains unresolved. The aim of the present study was to investigate the effect of crotalphine on ion channels in peripheral pain pathways. We found that picomolar concentrations of crotalphine selectively activate heterologously expressed and native TRPA1 ion channels. TRPA1 activation by crotalphine required intact N-terminal cysteine residues and was followed by strong and long-lasting desensitization of the channel. Homologous desensitization of recombinant TRPA1 and heterologous desensitization in cultured dorsal root ganglia neurons was observed. Likewise, crotalphine acted on peptidergic TRPA1-expressing nerve endings ex vivo as demonstrated by suppression of calcitonin gene-related peptide release from the trachea and in vivo by inhibition of chemically induced and inflammatory hypersensitivity in mice. The crotalphine-mediated desensitizing effect was abolished by the TRPA1 blocker HC030031 and absent in TRPA1-deficient mice. Taken together, these results suggest that crotalphine is the first peptide to mediate antinociception selectively and at subnanomolar concentrations by targeting TRPA1 ion channels.


Assuntos
Analgésicos/uso terapêutico , Hiperalgesia/tratamento farmacológico , Peptídeos/uso terapêutico , Canais de Potencial de Receptor Transitório/metabolismo , Potenciais de Ação/efeitos dos fármacos , Analgésicos/farmacologia , Animais , Bradicinina/toxicidade , Cálcio/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Gânglios Espinais/citologia , Células HEK293 , Humanos , Hiperalgesia/induzido quimicamente , Hiperalgesia/etiologia , Inflamação/complicações , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Peptídeos/farmacologia , Canal de Cátion TRPA1 , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Canais de Potencial de Receptor Transitório/genética , Zimosan/toxicidade
7.
Temperature (Austin) ; 3(1): 77-91, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27227099

RESUMO

Currently available behavioral assays to quantify normal cold sensitivity, cold hypersensitivity and cold hyperalgesia in mice have betimes created conflicting results in the literature. Some only capture a limited spectrum of thermal experiences, others are prone to experimenter bias or are not sensitive enough to detect the contribution of ion channels to cold sensing because in mice smaller alterations in cold nociception do not manifest as frank behavioral changes. To overcome current limitations we have designed a novel device that is automated, provides a high degree of freedom, i.e. thermal choice, and eliminates experimenter bias. The device represents a thermal gradient assay designed as a circular running track. It allows discerning exploratory behavior from thermal selection behavior and provides increased accuracy by providing measured values in duplicate and by removing edge artifacts. Our custom-designed automated offline analysis by a blob detection algorithm is devoid of movement artifacts, removes light reflection artifacts and provides an internal quality control parameter which we validated. The assay delivers discrete information on a large range of parameters extracted from the occupancy of thermally defined zones such as preference temperature and skew of the distribution. We demonstrate that the assay allows increasingly accurate phenotyping of thermal sensitivity in transgenic mice by disclosing yet unrecognized details on the phenotypes of TRPM8-, TRPA1- and TRPM8/A1-deficient mice.

8.
J Neurosci ; 33(42): 16627-41, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-24133266

RESUMO

Topically applied camphor elicits a sensation of cool, but nothing is known about how it affects cold temperature sensing. We found that camphor sensitizes a subpopulation of menthol-sensitive native cutaneous nociceptors in the mouse to cold, but desensitizes and partially blocks heterologously expressed TRPM8 (transient receptor potential cation channel subfamily M member 8). In contrast, camphor reduces potassium outward currents in cultured sensory neurons and, in cold nociceptors, the cold-sensitizing effects of camphor and menthol are additive. Using a membrane potential dye-based screening assay and heterologously expressed potassium channels, we found that the effects of camphor are mediated by inhibition of Kv7.2/3 channels subtypes that generate the M-current in neurons. In line with this finding, the specific M-current blocker XE991 reproduced the cold-sensitizing effect of camphor in nociceptors. However, the M-channel blocking effects of XE991 and camphor are not sufficient to initiate cold transduction but require a cold-activated inward current generated by TRPM8. The cold-sensitizing effects of XE991 and camphor are largest in high-threshold cold nociceptors. Low-threshold corneal cold thermoreceptors that express high levels of TRPM8 and lack potassium channels are not affected by camphor. We also found that menthol--like camphor--potently inhibits Kv7.2/3 channels. The apparent functional synergism arising from TRPM8 activation and M-current block can improve the effectiveness of topical coolants and cooling lotions, and may also enhance TRPM8-mediated analgesia.


Assuntos
Nociceptores/fisiologia , Transdução de Sinais/fisiologia , Canais de Cátion TRPM/metabolismo , Termorreceptores/fisiologia , Sensação Térmica/fisiologia , Animais , Cânfora/farmacologia , Temperatura Baixa , Feminino , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Masculino , Mentol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Fibras Nervosas Amielínicas/efeitos dos fármacos , Fibras Nervosas Amielínicas/metabolismo , Nociceptores/metabolismo , Transdução de Sinais/efeitos dos fármacos , Canais de Cátion TRPM/genética , Termorreceptores/metabolismo , Sensação Térmica/efeitos dos fármacos
9.
EMBO J ; 31(19): 3795-808, 2012 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-22850668

RESUMO

Ciguatoxins are sodium channel activator toxins that cause ciguatera, the most common form of ichthyosarcotoxism, which presents with peripheral sensory disturbances, including the pathognomonic symptom of cold allodynia which is characterized by intense stabbing and burning pain in response to mild cooling. We show that intraplantar injection of P-CTX-1 elicits cold allodynia in mice by targeting specific unmyelinated and myelinated primary sensory neurons. These include both tetrodotoxin-resistant, TRPA1-expressing peptidergic C-fibres and tetrodotoxin-sensitive A-fibres. P-CTX-1 does not directly open heterologously expressed TRPA1, but when co-expressed with Na(v) channels, sodium channel activation by P-CTX-1 is sufficient to drive TRPA1-dependent calcium influx that is responsible for the development of cold allodynia, as evidenced by a large reduction of excitatory effect of P-CTX-1 on TRPA1-deficient nociceptive C-fibres and of ciguatoxin-induced cold allodynia in TRPA1-null mutant mice. Functional MRI studies revealed that ciguatoxin-induced cold allodynia enhanced the BOLD (Blood Oxygenation Level Dependent) signal, an effect that was blunted in TRPA1-deficient mice, confirming an important role for TRPA1 in the pathogenesis of cold allodynia.


Assuntos
Ciguatoxinas/toxicidade , Dor/induzido quimicamente , Animais , Temperatura Baixa , Hiperalgesia/induzido quimicamente , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Ratos Wistar , Células Receptoras Sensoriais/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Canal de Cátion TRPA1 , Canais de Potencial de Receptor Transitório/efeitos dos fármacos , Canais de Potencial de Receptor Transitório/genética
10.
Anesthesiology ; 116(4): 903-17, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22314297

RESUMO

BACKGROUND: The recent discovery that camphor activates and strongly desensitizes the capsaicin-sensitive and noxious heat-sensitive channel transient receptor potential vanilloid subfamily member 1 (TRPV1) has provided new insights and opened up new research paths toward understanding why this naturally occurring monoterpene is widely used in human medicine for its local counter-irritant, antipruritic, and anesthetic properties. However, the molecular basis for camphor sensitivity remains mostly unknown. The authors attempt to explore the nature of the activation pathways evoked by camphor and narrow down a putative interaction site at TRPV1. METHODS: The authors transiently expressed wild-type or specifically mutated recombinant TRPV1 channels in human embryonic kidney cells HEK293T and recorded cation currents with the whole cell, patch clamp technique. To monitor changes in the spatial distribution of phosphatidylinositol 4,5-bisphosphate, they used fluorescence resonance energy transfer measurements from cells transfected with the fluorescent protein-tagged pleckstrin homology domains of phospholipase C. RESULTS: The results revealed that camphor modulates TRPV1 channel through the outer pore helix domain by affecting its overall gating equilibrium. In addition, camphor, which generally is known to decrease the fluidity of cell plasma membranes, may also regulate the activity of TRPV1 by inducing changes in the spatial distribution of phosphatidylinositol-4,5-bisphosphate on the inner leaflet of the plasma membrane. CONCLUSIONS: The findings of this study provide novel insights into the structural basis for the modulation of TRPV1 channel by camphor and may provide an explanation for the mechanism by which camphor modulates thermal sensation in vivo.


Assuntos
Cânfora/farmacologia , Canais de Cátion TRPV/fisiologia , Animais , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Cânfora/química , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Poro Nuclear/efeitos dos fármacos , Poro Nuclear/metabolismo , Estrutura Terciária de Proteína/efeitos dos fármacos , Estrutura Terciária de Proteína/fisiologia , Ratos , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/química
11.
Curr Pharm Biotechnol ; 12(1): 122-9, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20932251

RESUMO

Capsaicin and other vanilloids selectively excite and subsequently desensitize pain-conducting nerve fibers (nociceptors) and this process contributes to the analgesic (and thus therapeutically relevant) effects of these compounds. Such a desensitization process is triggered by the activation of the transient receptor potential vanilloid subtype 1 receptor channels (TRPV1) that open their cationic pores, permeable to sodium, potassium and calcium (Ca(2+)) ions. Depending on the duration of capsaicin exposure and the external calcium concentration, the Ca(2+) influx via TRPV1 channels desensitizes the channels themselves, which, from the cellular point of view, represents a feedback mechanism protecting the nociceptive neuron from toxic Ca(2+) overload. The 'acute desensitization' accounts for most of the reduction in responsiveness occurring within the first few (~20) seconds after the vanilloids are administered to the cell for the first time. Another form of desensitization is 'tachyphylaxis', which is a reduction in the response to repeated applications of vanilloid. The wealth of pathways following TRPV1 activation that lead to increased intracellular Ca(2+) levels and both forms of desensitization is huge and they might utilise just about every known type of signalling molecule. This review will not attempt to cover all historical aspects of research into all these processes. Instead, it will try to highlight some new challenging thoughts on the important phenomenon of TRPV1 desensitization and will focus on the putative mechanisms that are thought to account for the acute phase of this process.


Assuntos
Analgésicos/farmacologia , Cálcio/metabolismo , Nociceptores/metabolismo , Canais de Cátion TRPV/metabolismo , Analgésicos/metabolismo , Animais , Capsaicina/metabolismo , Capsaicina/farmacologia , Humanos , Fosfoinositídeo Fosfolipase C/metabolismo , Fosforilação , Canais de Cátion TRPV/agonistas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...