Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurotherapeutics ; 21(4): e00343, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38580510

RESUMO

Recently, we showed that high-definition transcranial direct current stimulation (hd-tDCS) can acutely reduce epileptic spike rates during and after stimulation in refractory status epilepticus (RSE), with a greater likelihood of patient discharge from the intensive care unit compared to historical controls. We investigate whether electroencephalographic (EEG) desynchronization during hd-tDCS can help account for observed anti-epileptic effects. Defining desynchronization as greater power in higher frequencies such as above 30 â€‹Hz ("gamma") and lesser power in frequency bands lower than 30 â€‹Hz, we analyzed 27 EEG sessions from 10 RSE patients who had received 20-minute session(s) of 2-milliamperes of transcranial direct current custom-targeted at the epileptic focus as previously determined by a clinical EEGer monitoring the EEG in real-time. During hd-tDCS, median relative power change over the EEG electrode chains in which power changes were maximal was +4.84%, -5.25%, -1.88%, -1.94%, and +4.99% for respective delta, theta, alpha, beta, and gamma frequency bands in the bipolar longitudinal montage (p â€‹= â€‹0.0001); and +4.13%, -5.44%, -1.81%, -3.23%, and +5.41% in the referential Laplacian montage (p â€‹= â€‹0.0012). After hd-tDCS, median relative power changes reversed over the EEG electrode chains in which power changes were maximal: -2.74%, +4.20%, +1.74%, +1.75%, and -4.68% for the respective delta, theta, alpha, beta, and gamma frequency bands in the bipolar longitudinal montage (p â€‹= â€‹0.0001); and +1.59%, +5.07%, +1.74%, +2.40%, and -5.12% in the referential Laplacian montage (p â€‹= â€‹0.0004). These findings are consistent with EEG desynchronization through theta-alpha-beta-gamma bands during hd-tDCS, helping account for the efficacy of hd-tDCS as an emerging novel anti-epileptic therapy against RSE.

2.
Can J Neurol Sci ; 51(2): 246-254, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37282558

RESUMO

BACKGROUND: Subclinical seizures are common in hospitalized patients and require electroencephalography (EEG) for detection and intervention. At our institution, continuous EEG (cEEG) is not available, but intermittent EEGs are subject to constant live interpretation. As part of quality improvement (QI), we sought to estimate the residual missed seizure rate at a typical quaternary Canadian health care center without cEEG. METHODS: We calculated residual risk percentages using the clinically validated 2HELPS2B score to risk-stratify EEGs before deriving a risk percentage using a MATLAB calculator which modeled the risk decay curve for each recording. We generated a range of estimated residual seizure rates depending on whether a pre-cEEG screening EEG was simulated, EEGs showing seizures were included, or repeat EEGs on the same patient were excluded. RESULTS: Over a 4-month QI period, 499 inpatient EEGs were scored as low (n = 125), medium (n = 123), and high (n = 251) seizure risk according to 2HELPS2B criteria. Median recording duration was 1:00:06 (interquartile range, IQR 30:40-2:21:10). The model with highest residual seizure rate included recordings with confirmed electrographic seizures (median 20.83%, IQR 20.6-26.6%), while the model with lowest residual seizure rate was in seizure-free recordings (median 10.59%, IQR 4%-20.6%). These rates were significantly higher than the benchmark 5% miss-rate threshold set by 2HELPS2B (p<0.0001). CONCLUSIONS: We estimate that intermittent inpatient EEG misses 2-4 times more subclinical seizures than the 2HELPS2B-determined acceptable 5% seizure miss-rate threshold for cEEG. Future research is needed to determine the impact of potentially missed seizures on clinical care.


Assuntos
Epilepsias Parciais , Pacientes Internados , Humanos , Canadá , Convulsões/diagnóstico , Eletroencefalografia
3.
Ann Clin Transl Neurol ; 10(11): 2166-2170, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37726939

RESUMO

Circannual status epilepticus (SE) patterns in communities near Earth's poles best test the hypothesis that SE susceptibility varies with light exposure because these communities are routinely subject to large changes in annual light exposure, which may result in changes to daily sleep time. We compared northern hemispheric circannual SE occurrence in Kivalliq, Canada (latitude-62.8° N) to southern hemispheric Auckland, New Zealand (latitude-36.9° S). Instead of peaking at a similar calendar time, SE peaked at a similar solar time during the increasing daylight phase after each region's respective winter solstice. This demonstrates that cumulative effects of increasing light exposure can mediate SE susceptibility.


Assuntos
Convulsões , Estado Epiléptico , Humanos , Convulsões/diagnóstico , Estações do Ano , Sono , Nova Zelândia
4.
Neurotherapeutics ; 20(1): 181-194, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36323975

RESUMO

Refractory status epilepticus (RSE) is a life-threatening emergency with high mortality and poor functional outcomes in survivors. Treatment is typically limited to intravenous anesthetic infusions and multiple anti-seizure medications. While ongoing seizures can cause permanent neurological damage, medical therapies also pose severe and life-threatening side effects. We tested the feasibility of using high-definition transcranial direct current stimulation (hd-tDCS) in the treatment of RSE. We conducted 20-min hd-tDCS sessions at an outward field orientation, intensity of 2-mA, 4 + 1 channels, and customized for deployment over the electrographic maximum of epileptiform activity ("spikes") determined by real-time clinical EEG monitoring. There were no adverse events from 32 hd-tDCS sessions in 10 RSE patients. Over steady dosing states of infusions and medications in 29 included sessions, median spike rates/patient fell by 50% during hd-tDCS on both automated (p = 0.0069) and human (p = 0.0277) spike counting. Median spike rates for any given stimulation session also fell by 50% during hd-tDCS on automated spike counting (p = 0.0032). Immediately after hd-tDCS, median spike rates/patient remained down by 25% on human spike counting (p = 0.018). Compared to historical controls, hd-tDCS subjects were successfully discharged from the intensive care unit (ICU) 45.8% more often (p = 0.004). When controls were selected using propensity score matching, the discharge rate advantage improved to 55% (p = 0.002). Customized EEG electrode targeting of hd-tDCS is a safe and non-invasive method of hyperacutely reducing epileptiform activity in RSE. Compared to historical controls, there was evidence of a cumulative chronic clinical response with more hd-tDCS subjects discharged from ICU.


Assuntos
Estado Epiléptico , Estimulação Transcraniana por Corrente Contínua , Humanos , Eletroencefalografia , Projetos Piloto , Projetos de Pesquisa , Estado Epiléptico/terapia , Estimulação Transcraniana por Corrente Contínua/métodos
5.
Sleep ; 45(6)2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35279715

RESUMO

STUDY OBJECTIVES: To compare estimated epileptic source localizations from 5 sleep-wake states (SWS): wakefulness (W), rapid eye movement sleep (REM), and non-REM 1-3. METHODS: Electrical source localization (sLORETA) of interictal spikes from different SWS on surface EEG from the epilepsy monitoring unit at spike peak and take-off, with results mapped to individual brain models for 75% of patients. Concordance was defined as source localization voxels shared between 2 and 5 SWS, and discordance as those unique to 1 SWS against 1-4 other SWS. RESULTS: 563 spikes from 16 prospectively recruited focal epilepsy patients across 161 day-nights. SWS exerted significant differences at spike peak but not take-off. Source localization size did not vary between SWS. REM localizations were smaller in multifocal than unifocal patients (28.8% vs. 54.4%, p = .0091). All five SWS contributed about 45% of their localizations to converge onto 17.0 ± 15.5% voxels. Against any one other SWS, REM was least concordant (54.4% vs. 66.9%, p = .0006) and most discordant (39.3% vs. 29.6%, p = .0008). REM also yielded the most unique localizations (20.0% vs. 8.6%, p = .0059). CONCLUSIONS: REM was best suited to identify candidate epileptic sources. sLORETA proposes a model in which an "omni-concordant core" of source localizations shared by all five SWS is surrounded by a "penumbra" of source localizations shared by some but not all SWS. Uniquely, REM spares this core to "move" source voxels from the penumbra to unique cortex not localized by other SWS. This may reflect differential intra-spike propagation in REM, which may account for its reported superior localizing abilities.


Assuntos
Eletroencefalografia , Epilepsia , Humanos , Sono , Sono REM , Vigília
6.
Epilepsy Behav ; 127: 108503, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34954513

RESUMO

OBJECTIVES: Emerging evidence suggests that circadian rhythms affect seizure propensity in addition to, and possibly independent of, sleep-wake states. Subject to extreme seasonal changes in light and dark, the northerly Arctic can serve as a "natural experiment" to assess the real-life impact of environmental influences on seizure severity. Therefore, we evaluated the timing of seizure evacuations over 11.25 years in a well-defined region of the Canadian Arctic. METHODS: Retrospective review of EEG database and patient records at the single "bottleneck" hospital to which all patients from the Kivalliq Region in Nunavut, Canada are evacuated for seizure emergencies. We calculated the mean resultant length (MRL) of circular data for circannual analysis, and conducted Rayleigh's test to assess for a statistical departure from circular uniformity. RESULTS: Screening 40,392 EEGs, we found 117 medical evacuations from 99 distinct individuals from September 2009 to November 2020. Most evacuations occurred month-wise in May (19%); week-wise within a 7-day period in February (5%), June (5%), or November (5%); and day-wise within a 24-hour period in June (3%) or November (3%). Maximal MRL clustering occurred in April no matter if analyzed by day (0.16333, p = 0.04), week (0.16296, p = 0.04), or month (0.1736, p = 0.03). CONCLUSIONS: A relative circannual increase in seizure evacuations between the winter and summer solstices may be related to increasing sleep loss when day length grows. Fewer evacuations between the summer and winter solstices may be related to decreased daylight and "catching up" on sleep when night length grows. Additional factors likely also play a role in circannual variation of seizure evacuations in the Arctic, which warrants further research.


Assuntos
Ritmo Circadiano , Convulsões , Regiões Árticas , Canadá/epidemiologia , Humanos , Incidência , Convulsões/diagnóstico , Convulsões/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...