Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38985418

RESUMO

Mining is a major economic activity in many developing countries. However, it disturbs the environment, producing enormous quantities of waste, known as mine tailings, which can have deleterious environmental impact, due to their high heavy metals (HM) content. Often, foundation species that establish on mine tailings are good candidates to study the effects of HM bioaccumulation at different levels of biological organization. Prosopis laevigata is considered a HM hyperaccumulator which presents attributes of a foundation species (FS) and establishes naturally on mine tailings. We evaluated the bioaccumulation of Cu, Pb, and Zn in P. laevigata foliar tissue, the leaf micro- and macro-morphological characters, DNA damage, and population genetic effects. In total, 80 P. laevigata individuals (20/site) belonging to four populations: The individuals from both sites (exposed and reference) bioaccumulated HMs (Pb > Cu > Zn). However, in the exposed individuals, Pb and Cu bioaccumulation was significantly higher. Also, a significant effect of macro- and micro-morphological characters was registered, showing significantly lower values in individuals from the exposed sites. In addition, we found significant differences in genotoxic damage in P. laevigata individuals, between the exposed and reference sites. In contrast, for the micro-morphological characters, none of the analyzed metals had any influence. P. laevigata did not show significant differences in the genetic structure and diversity between exposed and reference populations. However, four haplotypes and four private alleles were found in the exposed populations. Since P. laevigata is a species that establishes naturally in polluted sites and bioaccumulates HM in its foliar tissues, the resulting genetic, individual and population effects have not been severe enough to show detrimental effects; hence, P. laevigata can be a useful tool in phytoremediation strategies for soils polluted with Pb and Cu, maintaining its important ecological functions.

2.
Environ Sci Pollut Res Int ; 31(25): 37480-37495, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38776026

RESUMO

Glyphosate is a broad spectrum and non-selective herbicide employed to control different weeds in agricultural and urban zones and to facilitate the harvest of various crops. Currently, glyphosate-based formulations are the most employed herbicides in agriculture worldwide. Extensive use of glyphosate has been related to environmental pollution events and adverse effects on non-target organisms, including humans. Reducing the presence of glyphosate in the environment and its potential adverse effects requires the development of remediation and treatment alternatives. Bioremediation with microorganisms has been proposed as a feasible alternative for treating glyphosate pollution. The present study reports the glyphosate resistance profile and degradation capacity of the bacterial strain Burkholderia cenocepacia CEIB S5-2, isolated from an agricultural field in Morelos-México. According to the agar plates and the liquid media inhibition assays, the bacterial strain can resist glyphosate exposure at high concentrations, 2000 mg·L-1. In the degradation assays, the bacterial strain was capable of fast degrading glyphosate (50 mg·L-1) and the primary degradation metabolite aminomethylphosphonic acid (AMPA) in just eight hours. The analysis of the genomic data of B. cenocepacia CEIB S5-2 revealed the presence of genes that encode enzymes implicated in glyphosate biodegradation through the two metabolic pathways reported, sarcosine and AMPA. This investigation provides novel information about the potential of species of the genus Burkholderia in the degradation of the herbicide glyphosate and its main degradation metabolite (AMPA). Furthermore, the analysis of genomic information allowed us to propose for the first time a metabolic route related to the degradation of glyphosate in this bacterial group. According to the findings of this study, B. cenocepacia CEIB S5-2 displays a great glyphosate biodegradation capability and has the potential to be implemented in glyphosate bioremediation approaches.


Assuntos
Biodegradação Ambiental , Burkholderia cenocepacia , Glicina , Glifosato , Herbicidas , Glicina/análogos & derivados , Burkholderia cenocepacia/metabolismo , Herbicidas/metabolismo
3.
J Plant Res ; 137(1): 3-19, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37740854

RESUMO

Mexico is a major center of evolutionary radiation for the genus Quercus, with oak species occurring across different habitat types and showing a wide variation in morphology and growth form. Despite representing about 20% of Mexican species, scrub oaks have received little attention and even basic aspects of their taxonomy and geographic distribution remain unresolved. In this study, we analyzed the morphological and climatic niche differentiation of scrub oak populations forming a complex constituted by six named species, Quercus cordifolia, Quercus frutex, Quercus intricata, Quercus microphylla, Quercus repanda, Quercus striatula and a distinct morphotype of Q. striatula identified during field and herbarium work (hereafter named Q. striatula II). Samples were obtained from 35 sites covering the geographic distribution of the complex in northern and central Mexico. Morphological differentiation was analyzed through geometric morphometrics of leaf shape and quantification of trichome traits. Our results indicated the presence of two main morphological groups with geographic concordance. The first was formed by Q. frutex, Q. microphylla, Q. repanda and Q. striatula, distributed in the Trans-Mexican Volcanic Belt, the Sierra Madre Occidental and a little portion of the south of the Mexican Altiplano (MA). The second group consists of Q. cordifola, Q. intricata and Q. striatula II, found in the Sierra Madre Oriental and the MA. Therefore, our evidence supports the distinctness of the Q. striatula II morphotype, indicating the need for a taxonomic revision. Within the two groups, morphological differentiation among taxa varied from very clear to low or inexistent (i.e. Q. microphylla-Q. striatula and Q. cordifolia-Q. striatula II) but niche comparisons revealed significant niche differentiation in all pairwise comparisons, highlighting the relevance of integrative approaches for the taxonomic resolution of complicated groups such as the one studied here.


Assuntos
Quercus , Ecossistema , Evolução Biológica , México , Folhas de Planta
4.
PeerJ ; 11: e16136, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025722

RESUMO

With the aim of exploring the source of the high variability observed in the production of perezone, in Acourtia cordata wild plants, we analyze the influence of soil parameters and phenotypic characteristics on its perezone content. Perezone is a sesquiterpene quinone responsible for several pharmacological effects and the A. cordata plants are the natural source of this metabolite. The chemistry of perezone has been widely studied, however, no studies exist related to its production under natural conditions, nor to its biosynthesis and the environmental factors that affect the yield of this compound in wild plants. We also used a proteomic approach to detect differentially expressed proteins in wild plant rhizomes and compare the profiles of high vs. low perezone-producing plants. Our results show that in perezone-producing rhizomes, the presence of high concentrations of this compound could result from a positive response to the effects of some edaphic factors, such as total phosphorus (Pt), total nitrogen (Nt), ammonium (NH4), and organic matter (O. M.), but could also be due to a negative response to the soil pH value. Additionally, we identified 616 differentially expressed proteins between high and low perezone producers. According to the functional annotation of this comparison, the upregulated proteins were grouped in valine biosynthesis, breakdown of leucine and isoleucine, and secondary metabolism such as terpenoid biosynthesis. Downregulated proteins were grouped in basal metabolism processes, such as pyruvate and purine metabolism and glycolysis/gluconeogenesis. Our results suggest that soil parameters can impact the content of perezone in wild plants. Furthermore, we used proteomic resources to obtain data on the pathways expressed when A. cordata plants produce high and low concentrations of perezone. These data may be useful to further explore the possible relationship between perezone production and abiotic or biotic factors and the molecular mechanisms related to high and low perezone production.


Assuntos
Rizoma , Sesquiterpenos , Proteômica , Sesquiterpenos/química , Solo
5.
Plants (Basel) ; 12(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36987025

RESUMO

Heavy metal pollution is a worldwide environmental and human health problem. Prosopis laevigata is a hyperaccumulator legume that bioaccumulates Pb, Cu and Zn. With interest in designing phytoremediation strategies for sites contaminated with heavy metals, we isolated and characterized endophytic fungi from the roots of P. laevigata growing on mine tailings located in Morelos, Mexico. Ten endophytic isolates were selected by morphological discrimination and a preliminary minimum inhibitory concentration was determined for zinc, lead and copper. A novel strain of Aspergillus closest to Aspergillus luchuensis was determined to be a metallophile and presented a marked tolerance to high concentrations of Cu, Zn and Pb, so it was further investigated for removal of metals and promotion of plant growth under greenhouse conditions. The control substrate with fungi promoted larger size characters in P. laevigata individuals in comparison with the other treatments, demonstrating that A. luchuensis strain C7 is a growth-promoting agent for P. laevigata individuals. The fungus favors the translocation of metals from roots to leaves in P. laevigata, promoting an increased Cu translocation. This new A. luchuensis strain showed endophytic character and plant growth-promotion activity, high metal tolerance, and an ability to increase copper translocation. We propose it as a novel, effective and sustainable bioremediation strategy for copper-polluted soils.

6.
Environ Sci Pollut Res Int ; 30(17): 49840-49855, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36781676

RESUMO

The pollution generated by the heavy metals (HM) contained in mining wastes (tailings) is a worldwide recognized environmental concern. Due to the persistence, toxicity, bioaccumulation, and biomagnification capacity through the food chains, the release of HM into the environment causes negative effects on human health and the ecosystems. Wigandia urens Kunth (Boraginaceae) is a plant species that naturally establishes and grows in tailings and is consumed by the grasshopper Sphenarium purpurascens Charpentier (Orthoptera: Pyrgomorphidae). HM accumulation in this plant and their subsequent consumption by defoliating insects allow these contaminants to enter the food webs and favor their biomagnification. This study evaluated the effect of HM bioaccumulation in the leaf tissue of W. urens on the characteristics associated with its physical defense against herbivores and the effect of HM exposure on population parameters of grasshoppers through their ontogeny under controlled conditions. The results showed a significant increase in leaf hardness and in the number of simple and glandular trichomes in the leaves of W. urens growing on mine tailing substrate compared to those grown on the control substrate without HM. W. urens individuals growing on mine tailing substrate presented the following heavy metal foliar bioaccumulation pattern: Fe > Zn > Pb > Cu. These metals were also bioaccumulated in individuals of S. purpurascens fed with leaves of the plants exposed to mine tailings, observing differences in their concentration pattern through ontogeny. Grasshoppers fed on leaf tissue containing HM showed higher mortality in the first two developmental instars and lower body biomass throughout their ontogeny in comparison to the individuals fed on leaf tissue of plants growing on the control treatment without HM. In conclusion, W. urens is a species with phytoremediation potential for soils contaminated with HM, since it is naturally established in contaminated sites, has a wide geographic distribution, and bioaccumulates significant amounts of different HM. Furthermore, as was observed in this report, the W. urens physical and chemical defense against herbivores was enhanced by HM exposure, compromising the fitness and development of the herbivore S. purpurascens through its ontogeny and thus interrupting the entry and transfer of heavy metal through the food chain.


Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Bioacumulação , Ecossistema , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Metais Pesados/análise , Biodegradação Ambiental , Plantas , Solo
7.
Environ Sci Pollut Res Int ; 30(13): 38982-38999, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36595178

RESUMO

As a result of mining activities, waste of different types is generated. One example is mine tailings that contain potentially toxic elements such as heavy metals that negatively impact the environment and human health. Hence, developing treatments to guarantee its efficient elimination from the environment is necessary. Among these treatments, phytoremediation takes advantage of the potential of different plant species, to remove heavy metals from polluted sites. Gliricidia sepium is a tree that grows up to 15 m high and distributed from southern Mexico to Central America. This study evaluates the heavy metal bioaccumulation capacity in roots and leaves, and the effect of such bioaccumulation on fifteen macro- and one micro-morphological characters of G. sepium growing during 360 days in control, and in mine tailing substrates. G. sepium individuals growing on the exposed substrate registered the following average heavy metal bioaccumulation pattern in the roots: Fe > Pb > Zn > Cu, while in the leaf tissue, the bioaccumulation pattern was Cu > Fe > Pb > Zn. Macro- and micro-morphological characters evaluated in G. sepium decreased in plants exposed to metals. The translocation factor showed that Cu and Pb registered average values greater than 1. In conclusion, G. sepium is a species with potential for the phytoremediation of soils contaminated with Fe, Cu, and Pb, and for phytostabilizing soils polluted with Fe, Pb, Zn, and Cu, along with its ability to establish itself and turn into an abundant plant species in polluted sites, its capacity to bioaccumulate heavy metals in roots and leaves, and its high rate of HM translocation.


Assuntos
Fabaceae , Metais Pesados , Poluentes do Solo , Humanos , Bioacumulação , Chumbo , Poluentes do Solo/análise , Metais Pesados/análise , Plantas , Biodegradação Ambiental , Solo
8.
Environ Sci Pollut Res Int ; 30(2): 2509-2529, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35931856

RESUMO

Dodonaea viscosa (L.) Jacq. is a plant with a wide distribution that expands throughout almost all Mexican territory and is used in traditional medicine to treat many ailments. This species has been found associated with polluted areas, including mine tailings. Huautla, Morelos, Mexico, was a metallurgic district where mining activities generated 780,000 tons of waste rich in metals, deposited at 500 m from the town without any treatment; this situation has been related to different environmental threats and human health risks. The study was carried out for 18 months on seedlings developed under greenhouse conditions in two treatments: control substrate and mine tailings substrate. The concentration of six metals (Cd, Cr, Cu, Fe, Pb, and Zn) was measured through atomic absorption spectrophotometry in plant tissues, roots, and leaves. Effects of metal exposure were analyzed by size, micro-morphological character changes, and genetic damage in foliar tissue using the comet assay. The results showed significantly higher metal concentrations in the roots and leaves of individuals growing on the mine tailing substrate in comparison to the same plants tissues growing on control substrate. Positive and significant relationships between exposure time and metal concentration in roots and leaves, and between metal bioaccumulation in leaves and genetic damage were registered. Four out of six micro-morphological and size characters evaluated decreased significantly in exposed plants, except for stomatic index and root biomass. The most important metals in terms of the number of significantly affected micro-morphological and size characters showed the next pattern: Fe > Cd = Cr = Pb > Cu > Zn. D. viscosa is an efficient accumulator of Cu, Cd, Fe, Pb, and Zn in its root and leaf tissues. Overall, metal translocation factors in exposed D. viscosa plants showed the following pattern: Zn > Cu > Cd. We conclude that D. viscosa has the potential to phytoextract (Zn, Cu, and Cd), and phytostabilize (Cu, Cd, Fe, Pb, and Zn) metals from polluted soils, and along with its abundance, natural establishment in mine tailings, high levels of metal translocation, and bioconcentration factors, without affecting plant development, it can be an ideal candidate for phytoremediation of metal polluted soils.


Assuntos
Metais Pesados , Sapindaceae , Poluentes do Solo , Humanos , Solo , Cádmio , Chumbo , Metais Pesados/análise , Plantas , Biodegradação Ambiental , Poluentes do Solo/análise
9.
Plants (Basel) ; 11(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36559552

RESUMO

Phytoremediation is a cost-effective technique to remediate heavy metal (HM) polluted sites. However, the toxic effects of HM can limit plant establishment and development, reducing phytoremediation effectiveness. Therefore, the addition of organic amendments to mine wastes, such as biochar, improves the establishment of plants and reduces the bioavailability of toxic HM and its subsequent absorption by plants. Prosopis laevigata can establish naturally in mine tailings and accumulate different HM; however, these individuals show morphological and genetic damage. In this study, the effect of biochar on HM bioaccumulation in roots and aerial tissues, HM translocation, morphological characters and plant growth were evaluated, after three and six months of exposure. Plants grown on mine tailings with biochar presented significantly higher values for most of the evaluated characters, in respect to plants that grew on mine tailing substrate. Biochar addition reduced the bioaccumulation and translocation of Cu, Pb, and Cd, while it favored the translocation of essential metals such as Fe and Mn. The addition of biochar from agro-industrial residues to mine tailings improves the establishment of plants with potential to phytoextract and phytostabilize metals from polluted soils. Using biochar and heavy metal accumulating plants constitutes an assisted phytostabilization strategy with great potential for HM polluted sites such as Cd and Pb.

10.
Plants (Basel) ; 11(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36235477

RESUMO

Mexico is considered one of the main regions of diversification of the genus Quercus (oaks). Oak species are one of the most important tree groups, particularly in temperate forests, due to its diversity and abundance. Some studies have shown that oak contains specialized metabolites with medicinal importance. In this work, the acetonic extract from leaves of three Mexican oaks (Quercus rugosa, Q. glabrescens, and Q. obtusata) was separated using thin-layer chromatography and column chromatography. Chemical identification of the major compounds was determined using high-performance liquid chromatography and nuclear magnetic resonance. Nineteen compounds were identified, three belonging to the terpenoid family (ursolic acid, ß-amyrin, and ß-sitosterol) and 16 from the phenolic family. Of the isolated compounds, seven are new reports for oak species (scopoletin, ursolic acid, ß-amyrin, luteolin-7-O-glucoside, kaempferol-3-O-sophoroside, kaempferol-3-O-glucoside, and kaempferol-3-O-sambubioside). More compounds were identified in Q. rugosa followed by Q. glabrescens and then Q. obtusata. The characterization of specialized metabolites in oak species is relevant, from both phytocentric and anthropocentric perspectives.

11.
Pestic Biochem Physiol ; 187: 105197, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36127069

RESUMO

Methyl parathion is an organophosphorus pesticide widely employed worldwide to control pests in agricultural and domestic environments. However, due to its intensive use, high toxicity, and environmental persistence, methyl parathion is recognized as an important ecosystem and human health threat, causing severe environmental pollution events and numerous human poisoning and deaths each year. Therefore, identifying and characterizing microorganisms capable of fully degrading methyl parathion and its degradation metabolites is a crucial environmental task for the bioremediation of pesticide-polluted sites. Burkholderia zhejiangensis CEIB S4-3 is a bacterial strain isolated from agricultural soils capable of immediately hydrolyzing methyl parathion at a concentration of 50 mg/L and degrading the 100% of the released p-nitrophenol in a 12-hour lapse when cultured in minimal salt medium. In this study, a comparative proteomic analysis was conducted in the presence and absence of methyl parathion to evaluate the biological mechanisms implicated in the methyl parathion biodegradation and resistance by the strain B. zhejiangensis CEIB S4-3. In each treatment, the changes in the protein expression patterns were evaluated at three sampling times, zero, three, and nine hours through the use of two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), and the differentially expressed proteins were identified by mass spectrometry (MALDI-TOF). The proteomic analysis allowed the identification of 72 proteins with differential expression, 35 proteins in the absence of the pesticide, and 37 proteins in the experimental condition in the presence of methyl parathion. The identified proteins are involved in different metabolic processes such as the carbohydrate and amino acids metabolism, carbon metabolism and energy production, fatty acids ß-oxidation, and the aromatic compounds catabolism, including enzymes of the both p-nitrophenol degradation pathways (Hydroquinone dioxygenase and Hydroxyquinol 1,2 dioxygenase), as well as the overexpression of proteins implicated in cellular damage defense mechanisms such as the response and protection of the oxidative stress, reactive oxygen species defense, detoxification of xenobiotics, and DNA repair processes. According to these data, B. zhejiangensis CEIB S4-3 overexpress different proteins related to aromatic compounds catabolism and with the p-nitrophenol  degradation pathways, the higher expression levels observed in the two subunits of the enzyme Hydroquinone dioxygenase, suggest a preferential use of the Hydroquinone metabolic pathway in the p-nitrophenol degradation process. Moreover the overexpression of several proteins implicated in the oxidative stress response, xenobiotics detoxification, and DNA damage repair reveals the mechanisms employed by B. zhejiangensis CEIB S4-3 to counteract the adverse effects caused by the methyl parathion and p-nitrophenol exposure.


Assuntos
Dioxigenases , Metil Paration , Praguicidas , Aminoácidos , Burkholderiaceae , Carboidratos , Carbono , Ecossistema , Ácidos Graxos , Hidroquinonas/análise , Metil Paration/análise , Metil Paration/química , Metil Paration/toxicidade , Nitrofenóis , Compostos Organofosforados , Proteômica , Espécies Reativas de Oxigênio , Solo
12.
Microorganisms ; 9(11)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34835448

RESUMO

Glyphosate is a broad-spectrum herbicide extensively used worldwide to eliminate weeds in agricultural areas. Since its market introduction in the 70's, the levels of glyphosate agricultural use have increased, mainly due to the introduction of glyphosate-resistant transgenic crops in the 90's. Glyphosate presence in the environment causes pollution, and recent findings have proposed that glyphosate exposure causes adverse effects in different organisms, including humans. In 2015, glyphosate was classified as a probable carcinogen chemical, and several other human health effects have been documented since. Environmental pollution and human health threats derived from glyphosate intensive use require the development of alternatives for its elimination and proper treatment. Bioremediation has been proposed as a suitable alternative for the treatment of glyphosate-related pollution, and several microorganisms have great potential for the biodegradation of this herbicide. The present review highlights the environmental and human health impacts related to glyphosate pollution, the proposed alternatives for its elimination through physicochemical and biological approaches, and recent studies related to glyphosate biodegradation by bacteria and fungi are also reviewed. Microbial remediation strategies have great potential for glyphosate elimination, however, additional studies are needed to characterize the mechanisms employed by the microorganisms to counteract the adverse effects generated by the glyphosate exposure.

13.
Environ Sci Pollut Res Int ; 28(39): 55373-55387, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34132966

RESUMO

Wild animals that inhabit inside mine tailings which contain heavy metals are an excellent study model to conduct ecotoxicological studies that analyze chronic metal exposures at low doses (realistic exposures). This study was conducted in Huautla, Morelos, Mexico, in a mining district where 780,000 tons of wastes were deposited in open air. Liomys irroratus is a small mammal species that lives inside these mine tailings. A multibiomarker approach study was performed to analyze metal bioaccumulation levels (biomarker of exposure) by inductively coupled plasma mass spectrometry, DNA damage levels (biomarker of early effects) through the alkaline comet assay, and population genetic structure and diversity (biomarker of permanent effects), using seven microsatellite loci, in 75 L. irroratus individuals, from two mine tailings and one reference site. Concentrations of aluminum, copper, iron, nickel, lead, and zinc were statistically higher in the liver of exposed individuals. Significant DNA damage levels were registered in the mine tailings groups. Aluminum, lead, and nickel had the highest contribution to the genetic damage levels observed, while aluminum and nickel had the highest contribution to genetic diversity effects. A positive and significant relationship was detected between individual genetic diversity (internal relatedness) and genetic damage (DNA single-strand breaks). Genetic structure of L. irroratus populations revealed that the main source of genetic variation was located within populations. We consider that multibiomarker studies in environmental settings using sentinel species are valuable for environmental risk assessment and ecological responses in chronic exposed populations.


Assuntos
Metais Pesados , Roedores , Animais , Ecotoxicologia , Humanos , México
14.
Environ Sci Pollut Res Int ; 28(31): 42414-42431, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33813711

RESUMO

Methyl parathion (MP) is a highly toxic organophosphorus pesticide associated with water, soil, and air pollution events. The identification and characterization of microorganisms capable of biodegrading pollutants are an important environmental task for bioremediation of pesticide impacted sites. The strain Burkholderia cenocepacia CEIB S5-2 is a bacterium capable of efficiently hydrolyzing MP and biodegrade p-nitrophenol (PNP), the main MP hydrolysis product. Due to the high PNP toxicity over microbial living forms, the reports on bacterial PNP biodegradation are scarce. According to the genomic data, the MP- and PNP-degrading ability observed in B. cenocepacia CEIB S5-2 is related to the presence of the methyl parathion-degrading gene (mpd) and the gene cluster pnpABA'E1E2FDC, which include the genes implicated in the PNP degradation. In this work, the transcriptomic analysis of the strain in the presence of MP revealed the differential expression of 257 genes, including all genes implicated in the PNP degradation, as well as a set of genes related to the sensing of environmental changes, the response to stress, and the degradation of aromatic compounds, such as translational regulators, membrane transporters, efflux pumps, and oxidative stress response genes. These findings suggest that these genes play an important role in the defense against toxic effects derived from the MP and PNP exposure. Therefore, B. cenocepacia CEIB S5-2 has a great potential for application in pesticide bioremediation approaches due to its biodegradation capabilities and the differential expression of genes for resistance to MP and PNP.


Assuntos
Burkholderia cenocepacia , Metil Paration , Praguicidas , Biodegradação Ambiental , Burkholderia cenocepacia/genética , Compostos Organofosforados , Transcriptoma
15.
Environ Sci Pollut Res Int ; 27(32): 40187-40204, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32661966

RESUMO

Mining industry generates large volumes of waste known as mine tailings, which contain heavy metals (HMs) that generate a risk to environmental health. Thus, remediation of HM pollution requires attention. In this study, HM bioaccumulation, genotoxic damage, and morphological and physiological changes in the tree species Prosopis laevigata were evaluated in order to assess its potential for remediation of mine tailings. P. laevigata plants were established in two treatments (reference substrate and tailing substrate) under greenhouse conditions. Every 2 months, six individuals were selected per treatment for 1 year. From each individual, macromorphological (height, stem diameter, and number of leaves), micromorphological (stomatal coverage and stomatal index), and physiological parameters (chlorophyll content) were evaluated, as well as the concentration of Pb, Cu, Cd, Cr, Fe, and Zn in root and foliar tissue. Genetic damage was assessed by the comet assay in foliar tissue. These parameters were evaluated in adult individuals established in mine tailings. Roots bioaccumulated significantly more HM compared to foliar tissue. However, the bioaccumulation pattern in both tissues was Fe > Pb > Zn > Cu. The plants in tailing substrate reduced significantly the morphological and physiological characters throughout the experiment. Only the bioaccumulation of Pb affected significantly the levels of genetic damage and the number of leaves, while Zn reduced plant height. The percentage of plants that have translocation factor values greater than 1 are Cu (92.9) > Fe (85.7) > Pb (75.0) > Zn (64.3). P. laevigata has potential to phytoremediate environments contaminated with metals, due to its dominance and establishment in abandoned mine tailings, and its ability to bioaccumulate HM unaffecting plant development, as well as their high levels of HM translocation.


Assuntos
Metais Pesados , Prosopis , Poluentes do Solo , Bioacumulação , Biodegradação Ambiental , Dano ao DNA , Humanos , Metais Pesados/análise , Poluentes do Solo/análise
16.
Environ Sci Pollut Res Int ; 27(29): 36330-36349, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32556984

RESUMO

Ecotoxicological studies are necessary in order to evaluate the effects of environmental exposure of chemicals on wild animals and their ecological consequences. Particularly, neurobehavioral effects of heavy metal elements on wild rodents have been scarcely investigated. In the present study, we analyzed the effect of metal bioaccumulation (Pb, As, Mg, Ni, and Zn) in the brain and in the liver on exploratory activity, learning, memory, and on some dopaminergic markers in the wild rodent Liomys irroratus living inside mine tailings, at Huautla, Morelos, Mexico. We found higher Pb concentration but lower Zn in striatum, nucleus accumbens, midbrain, and hippocampus in exposed animals in comparison to rodents from the reference site. Exposed rodents exhibited anxious behavior evaluated in the open field, while no alterations in learning were found. However, they displayed slight changes in the memory test in comparison to reference group. The neurochemical evaluation showed higher levels of dopamine and 5-hydroxyindolacetic acid in midbrain, while lower levels of metabolites dihydroxyphenyl acetic acid and homovanillic acid in striatum of exposed rodents. In addition, mRNA expression levels of dopaminergic D2 receptors in nucleus accumbens were lower in animals from the mining zone than in animals from the reference zone. This is the first study that shows that chronic environmental exposure to metals results in behavioral and neurochemical alterations in the wild rodent L. irroratus, a fact that may comprise the survival of the individuals resulting in long-term effects at the population level. Finally, we suggest the use of L. irroratus as a sentinel species for environmental biomonitoring of mining sites.


Assuntos
Metais Pesados/análise , Poluentes do Solo/análise , Animais , Bioacumulação , Encéfalo , Monitoramento Ambiental , México , Roedores
17.
Curr Microbiol ; 77(4): 545-563, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32078006

RESUMO

Pesticides are xenobiotic molecules necessary to control pests in agriculture, home, and industry. However, water and soil can become contaminated as a consequence of their extensive use. Therefore, because of its eco-friendly characteristics and efficiency, bioremediation of contaminated sites is a powerful tool with advantages over other kinds of treatments. For an efficient pesticides bioremediation, it is necessary to take into account different aspects related to the microbial metabolism and physiology. In this respect, OMICs studies such as genomics, transcriptomics, proteomics, and metabolomics are essential to generate relevant information about the genes and proteins involved in pesticide degradation, the metabolites generated by microbial pesticide degradation, and the cellular strategies to contend against stress caused by pesticide exposition. Pesticides as organochlorines and organophosphorus are the more commonly studied using OMIC approaches. To date, many genomes of microorganisms capable of degrading pesticides have been published, mainly bacterial strains from Burkholderia, Pseudomonas, and Rhodococcus genera. Following the genomic reports, transcriptomic studies, using microarrays and more recently next-generation sequencing technology RNA-Seq, in pesticide microbial degradation are the most numerous. Proteomics, metabolomics, as well as studies that combine different OMIC are gained interest. This review aims to describe a brief overview of pesticide biodegradation mechanisms; new tools to study microorganisms in natural environments; basic concepts of the OMICs approaches; as well as advances in methodologies associated with the analysis of that tools. Additionally, the most recent reports on genomics, transcriptomics, proteomics, and metabolomics during the degradation of pesticides are also analyzed.


Assuntos
Bactérias/metabolismo , Biodegradação Ambiental , Genômica , Metabolômica , Praguicidas/metabolismo , Proteômica , Bactérias/genética , Biologia Computacional/métodos , Humanos
18.
Microorganisms ; 8(2)2020 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-32046254

RESUMO

Heavy metal pollution has become an environmental and health problem worldwide. With the aim of finding novel strategies for metal bioremediation, endophytic fungi from the heavy metal hyperaccumulator plant Vachellia farnesiana were isolated and characterized. The plants were growing in mine tailings, rich in Zn, Pb, and Cu. Morphological and phylogenetic analyses indicated that the fungal strains belonged to Neocosmospora and Aspergillus genera. The Neocosmospora isolate belongs to the Fusarium solani species complex (FSSC) that groups phytopathogen species. However, in this case the plants from which it was isolated did not show any signs of disease. Both fungal strains were able to remove significant amounts of heavy metals from liquid cultures, either in a mixture of the three metals or each metal in a single culture. In response to lead exposure, the Neocosmospora sp. strain secreted specific novel phenolic compounds other than anthraquinones or naphtoquinones, which have been described in similar situations. The Aspergillus sp. dropped the pH in the medium. High-performance liquid chromatography determinations indicated that this strain secreted mainly glutamic acid in response to lead, a novel mechanism, which has not been reported elsewhere. Malic and succinic acids were also produced in response to lead exposure. Possibly, glutamic and succinic acids (synthesized in the Krebs cycle) can be used to cope with metal toxicity due to the plant providing photosynthates to the fungus. These fungi showed the potential to be used for bioremediation or restoration of metal-polluted environments.

19.
Environ Sci Pollut Res Int ; 27(10): 11260-11276, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31960245

RESUMO

Vachellia campechiana (Mill Seigler & Ebinger) is widely distributed in Mexico and is a dominant species of tailings in Huautla, in the state of Morelos, Mexico. Mining activities carried out in this region generated about 780 thousand tons of bioavailable heavy metal waste (HMs) that were deposited in the environment without any treatment. This study evaluates the bioaccumulation capacity and morphological changes of V. campechiana growing during 1 year in control or tailing substrates (treatments) under greenhouse conditions. The concentration of six HMs was also measured in roots, leaves, and seeds by atomic absorption spectrophotometry. Five metals showed a similar bioaccumulation pattern in the roots and leaves of V. campechiana grown in both substrates: Pb > Fe > Cr > Cu > Zn. The concentrations of Cr, Cu, and Pb were significantly higher in the roots and leaves of individuals growing on the exposed substrate. The presence of essential metals (Cu, Fe, Zn) was only recorded in the seeds, with similar concentrations in both treatments. Seventeen of 18 morphological characters evaluated in V. campechiana decreased in plants exposed to metals. Pb, Cu, and Fe showed a bioconcentration factor greater than one in roots and leaves. The translocation factor showed the following pattern: Cr > Cu = Pb. In conclusion, V. campechiana is a candidate species to phytoremediate environments contaminated with Pb, Cr, and Cu due to its ability to establish itself and turn into the dominant plant species in polluted sites, its ability to bioaccumulate non-essential metals in roots and leaves, and its high rate of HMs translocation.


Assuntos
Fabaceae , Metais Pesados/análise , Poluentes do Solo/análise , Bioacumulação , Chumbo , México
20.
PeerJ ; 7: e6822, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31086743

RESUMO

Burkholderia zhejiangensis CEIB S4-3 has the ability to degrade methyl parathion (MP) and its main hydrolysis byproduct p-nitrophenol (PNP). According to genomic data, several genes related with metabolism of MP and PNP were identified in this strain. However, the metabolic state of the strain during the MP degradation has not been evaluated. In the present study, we analyzed gene expression changes during MP hydrolysis and PNP degradation through a transcriptomic approach. The transcriptional analysis revealed differential changes in the expression of genes involved in important cellular processes, such as energy production and conversion, transcription, amino acid transport and metabolism, translation, ribosomal structure and biogenesis, among others. Transcriptomic data also exhibited the overexpression of both PNP-catabolic gene clusters (pnpABA'E1E2FDC and pnpE1E2FDC) present in the strain. We found and validated by quantitative reverse transcription polymerase chain reaction the expression of the methyl parathion degrading gene, as well as the genes responsible for PNP degradation contained in two clusters. This proves the MP degradation pathway by the strain tested in this work. The exposure to PNP activates, in the first instance, the expression of the transcriptional regulators multiple antibiotic resistance regulator and Isocitrate Lyase Regulator (IclR), which are important in the regulation of genes from aromatic compound catabolism, as well as the expression of genes that encode transporters, permeases, efflux pumps, and porins related to the resistance to multidrugs and other xenobiotics. In the presence of the pesticide, 997 differentially expressed genes grouped in 104 metabolic pathways were observed. This report is the first to describe the transcriptomic analysis of a strain of B. zhejiangensis during the biodegradation of PNP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...