Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bio Protoc ; 14(3): e4926, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38379828

RESUMO

Measuring autonomic parameters like heart rate in behaving mice is not only a standard procedure in cardiovascular research but is applied in many other interdisciplinary research fields. With an electrocardiogram (ECG), the heart rate can be measured by deriving the electrical potential between subcutaneously implanted wires across the chest. This is an inexpensive and easy-to-implement technique and particularly suited for repeated recordings of up to eight weeks. This protocol describes a step-by-step guide for manufacturing the needed equipment, performing the surgical procedure of electrode implantation, and processing of acquired data, yielding accurate and reliable detection of heartbeats and calculation of heart rate (HR). We provide MATLAB graphical user interface (GUI)-based tools to extract and start processing the acquired data without a lot of coding knowledge. Finally, based on an example of a data set acquired in the context of defensive reactions, we discuss the potential and pitfalls in analyzing HR data. Key features • Next to surgical steps, the protocol provides a detailed description of manufacturing custom-made ECG connectors and a shielded, light-weight patch cable. • Suitable for recordings in which signal quality is challenged by ambient noise or noise from other recording devices. • Described for 2-channel differential recording but easily expandable to record from more channels. • Includes a summary of potential analysis methods and a discussion on the interpretation of HR dynamics in the case study of fear states.

2.
J Headache Pain ; 24(1): 165, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38062355

RESUMO

BACKGROUND: Migraine is a disabling neurological disorder, characterized by recurrent headaches. During migraine attacks, individuals often experience sensory symptoms such as cutaneous allodynia which indicates the presence of central sensitization. This sensitization is prevented by oral administration of propranolol, a common first-line medication for migraine prophylaxis, that also normalized the activation of the locus coeruleus (LC), considered as the main origin of descending noradrenergic pain controls. We hypothesized that the basal modulation of trigeminal sensory processing by the locus coeruleus is shifted towards more facilitation in migraineurs and that prophylactic action of propranolol may be attributed to a direct action in LC through beta-adrenergic receptors. METHODS: We used simultaneous in vivo extracellular recordings from the trigeminocervical complex (TCC) and LC of male Sprague-Dawley rats to characterize the relationship between these two areas following repeated meningeal inflammatory soup infusions. Von Frey Hairs and air-puff were used to test periorbital mechanical allodynia. RNAscope and patch-clamp recordings allowed us to examine the action mechanism of propranolol. RESULTS: We found a strong synchronization between TCC and LC spontaneous activities, with a precession of the LC, suggesting the LC drives TCC excitability. Following repeated dural-evoked trigeminal activations, we observed a disruption in coupling of activity within LC and TCC. This suggested an involvement of the two regions' interactions in the development of sensitization. Furthermore, we showed the co-expression of alpha-2A and beta-2 adrenergic receptors within LC neurons. Finally propranolol microinjections into the LC prevented trigeminal sensitization by desynchronizing and decreasing LC neuronal activity. CONCLUSIONS: Altogether these results suggest that trigemino-coerulean coupling plays a pivotal role in migraine progression, and that propranolol's prophylactic effects involve, to some extent, the modulation of LC activity through beta-2 adrenergic receptors. This insight reveals new mechanistic aspects of LC control over sensory processing.


Assuntos
Transtornos de Enxaqueca , Propranolol , Ratos , Animais , Masculino , Propranolol/farmacologia , Propranolol/uso terapêutico , Ratos Sprague-Dawley , Locus Cerúleo , Receptores Adrenérgicos beta 2/uso terapêutico , Transtornos de Enxaqueca/prevenção & controle , Transtornos de Enxaqueca/tratamento farmacológico , Hiperalgesia/tratamento farmacológico
4.
Front Syst Neurosci ; 17: 1160083, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064160

RESUMO

Despite fine tuning voluntary movement as the most prominently studied function of the cerebellum, early human studies suggested cerebellar involvement emotion regulation. Since, the cerebellum has been associated with various mood and anxiety-related conditions. Research in animals provided evidence for cerebellar contributions to fear memory formation and extinction. Fear and anxiety can broadly be referred to as defensive states triggered by threat and characterized by multimodal adaptations such as behavioral and cardiac responses integrated into an intricately orchestrated defense reaction. This is mediated by an evolutionary conserved, highly interconnected network of defense-related structures with functional connections to the cerebellum. Projections from the deep cerebellar nucleus interpositus to the central amygdala interfere with retention of fear memory. Several studies uncovered tight functional connections between cerebellar deep nuclei and pyramis and the midbrain periaqueductal grey. Specifically, the fastigial nucleus sends direct projections to the ventrolateral PAG to mediate fear-evoked innate and learned freezing behavior. The cerebellum also regulates cardiovascular responses such as blood pressure and heart rate-effects dependent on connections with medullary cardiac regulatory structures. Because of the integrated, multimodal nature of defensive states, their adaptive regulation has to be highly dynamic to enable responding to a moving threatening stimulus. In this, predicting threat occurrence are crucial functions of calculating adequate responses. Based on its role in prediction error generation, its connectivity to limbic regions, and previous results on a role in fear learning, this review presents the cerebellum as a regulator of integrated cardio-behavioral defensive states.

5.
Nat Commun ; 14(1): 1679, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973256

RESUMO

Bioimages frequently exhibit low signal-to-noise ratios due to experimental conditions, specimen characteristics, and imaging trade-offs. Reliable segmentation of such ambiguous images is difficult and laborious. Here we introduce deepflash2, a deep learning-enabled segmentation tool for bioimage analysis. The tool addresses typical challenges that may arise during the training, evaluation, and application of deep learning models on ambiguous data. The tool's training and evaluation pipeline uses multiple expert annotations and deep model ensembles to achieve accurate results. The application pipeline supports various use-cases for expert annotations and includes a quality assurance mechanism in the form of uncertainty measures. Benchmarked against other tools, deepflash2 offers both high predictive accuracy and efficient computational resource usage. The tool is built upon established deep learning libraries and enables sharing of trained model ensembles with the research community. deepflash2 aims to simplify the integration of deep learning into bioimage analysis projects while improving accuracy and reliability.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes , Diagnóstico por Imagem/métodos , Razão Sinal-Ruído
6.
Nat Neurosci ; 26(3): 447-457, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36759559

RESUMO

Fear and anxiety are brain states that evolved to mediate defensive responses to threats. The defense reaction includes multiple interacting behavioral, autonomic and endocrine adjustments, but their integrative nature is poorly understood. In particular, although threat has been associated with various cardiac changes, there is no clear consensus regarding the relevance of these changes for the integrated defense reaction. Here we identify rapid microstates that are associated with specific behaviors and heart rate dynamics, which are affected by long-lasting macrostates and reflect context-dependent threat levels. In addition, we demonstrate that one of the most commonly used defensive behavioral responses-freezing as measured by immobility-is part of an integrated cardio-behavioral microstate mediated by Chx10+ neurons in the periaqueductal gray. Our framework for systematic integration of cardiac and behavioral readouts presents the basis for a better understanding of complex neural defensive states and their associated systemic functions.


Assuntos
Medo , Substância Cinzenta Periaquedutal , Medo/fisiologia , Substância Cinzenta Periaquedutal/fisiologia , Ansiedade , Neurônios/fisiologia , Frequência Cardíaca
7.
Proc Biol Sci ; 289(1975): 20220405, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35582796

RESUMO

Adequate defensive responding is crucial for mental health but scientifically not well understood. Specifically, it seems difficult to dissociate defense and approach states based on autonomic response patterns. We thus explored the robustness and threat-specificity of recently described oculomotor dynamics upon threat in anticipation of either threatening or rewarding stimuli in humans. While visually exploring naturalistic images, participants (50 per experiment) expected an inevitable, no, or avoidable shock (Experiment 1) or a guaranteed, no, or achievable reward (Experiment 2) that could be averted or gained by a quick behavioural response. We observed reduced heart rate (bradycardia), increased skin conductance, pupil dilation and globally centralized gaze when shocks were inevitable but, more pronouncedly, when they were avoidable. Reward trials were not associated with globally narrowed visual exploration, but autonomic responses resembled characteristics of the threat condition. While bradycardia and concomitant sympathetic activation reflect not only threat-related but also action-preparatory states independent of valence, global centralization of gaze seems a robust phenomenon during the anticipation of avoidable threat. Thus, instead of relying on single readouts, translational research in animals and humans should consider the multi-dimensionality of states in aversive and rewarding contexts, especially when investigating ambivalent, conflicting situations.


Assuntos
Bradicardia , Medo , Medo/fisiologia , Medo/psicologia , Humanos , Recompensa
8.
Angew Chem Int Ed Engl ; 61(30): e202202078, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35421279

RESUMO

Visualization of inhibitory synapses requires protocol tailoring for different sample types and imaging techniques, and usually relies on genetic manipulation or the use of antibodies that underperform in tissue immunofluorescence. Starting from an endogenous ligand of gephyrin, a universal marker of the inhibitory synapse, we developed a short peptidic binder and dimerized it, significantly increasing affinity and selectivity. We further tailored fluorophores to the binder, yielding "Sylite"-a probe with outstanding signal-to-background ratio that outperforms antibodies in tissue staining with rapid and efficient penetration, mitigation of staining artifacts, and simplified handling. In super-resolution microscopy Sylite precisely localizes the inhibitory synapse and enables nanoscale measurements. Sylite profiles inhibitory inputs and synapse sizes of excitatory and inhibitory neurons in the midbrain and combined with complimentary tracing techniques reveals the synaptic connectivity.


Assuntos
Neurônios , Sinapses , Encéfalo
9.
Exp Neurol ; 351: 114008, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35149118

RESUMO

Accelerating technological progress in experimental neuroscience is increasing the scale as well as specificity of both observational and perturbational approaches to study circuit physiology. While these techniques have also been used to study disease mechanisms, a wider adoption of these approaches in the field of experimental neurology would greatly facilitate our understanding of neurological dysfunctions and their potential treatments at cellular and circuit level. In this review, we will introduce classic and novel methods ranging from single-cell electrophysiological recordings to state-of-the-art calcium imaging and cell-type specific optogenetic or chemogenetic stimulation. We will focus on their application in rodent models of Parkinson's disease while also presenting their use in the context of motor control and basal ganglia function. By highlighting the scope and limitations of each method, we will discuss how they can be used to study pathophysiological mechanisms at local and global circuit levels and how novel frameworks can help to bridge these scales.


Assuntos
Estimulação Encefálica Profunda , Neurologia , Doença de Parkinson , Animais , Gânglios da Base/fisiologia , Optogenética , Doença de Parkinson/terapia , Roedores
10.
Exp Neurol ; 352: 114011, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35176273

RESUMO

Gait impairments in Parkinson's disease remain a scientific and therapeutic challenge. The advent of new deep brain stimulation (DBS) devices capable of recording brain activity from chronically implanted electrodes has fostered new studies of gait in freely moving patients. The hope is to identify gait-related neural biomarkers and improve therapy using closed-loop DBS. In this context, animal models offer a wealth of opportunities to investigate gait network impairments at multiple biological scales and address unresolved questions from clinical research. Yet, the contribution of rodent models to the development of future neuromodulation therapies will rely on translational validity. In this review, we summarize the most effective strategies to model parkinsonian gait in rodents. We discuss how clinical observations have inspired targeted brain lesions in animal models, and whether resulting motor deficits and network oscillations match recent findings in humans. We conclude that future research should incorporate behavioral tests with increased cognitive demands to potentially uncover episodic gait impairments in rodents. Additionally, we expect that basic research will benefit from the implementation of evolving signal processing strategies from clinical research. This coevolution of translational research may contribute to the future optimization of gait therapy in Parkinson's disease.


Assuntos
Estimulação Encefálica Profunda , Transtornos Neurológicos da Marcha , Doença de Parkinson , Animais , Estimulação Encefálica Profunda/métodos , Marcha/fisiologia , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/terapia , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/patologia , Doença de Parkinson/terapia , Roedores
11.
Front Hum Neurosci ; 15: 745689, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858153

RESUMO

Brain-wide neural circuits enable bi- and quadrupeds to express adaptive locomotor behaviors in a context- and state-dependent manner, e.g., in response to threats or rewards. These behaviors include dynamic transitions between initiation, maintenance and termination of locomotion. Advances within the last decade have revealed an intricate coordination of these individual locomotion phases by complex interaction of multiple brain circuits. This review provides an overview of the neural basis of state-dependent modulation of locomotion initiation, maintenance and termination, with a focus on insights from circuit-centered studies in rodents. The reviewed evidence indicates that a brain-wide network involving excitatory circuit elements connecting cortex, midbrain and medullary areas appears to be the common substrate for the initiation of locomotion across different higher-order states. Specific network elements within motor cortex and the mesencephalic locomotor region drive the initial postural adjustment and the initiation of locomotion. Microcircuits of the basal ganglia, by implementing action-selection computations, trigger goal-directed locomotion. The initiation of locomotion is regulated by neuromodulatory circuits residing in the basal forebrain, the hypothalamus, and medullary regions such as locus coeruleus. The maintenance of locomotion requires the interaction of an even larger neuronal network involving motor, sensory and associative cortical elements, as well as defined circuits within the superior colliculus, the cerebellum, the periaqueductal gray, the mesencephalic locomotor region and the medullary reticular formation. Finally, locomotor arrest as an important component of defensive emotional states, such as acute anxiety, is mediated via a network of survival circuits involving hypothalamus, amygdala, periaqueductal gray and medullary premotor centers. By moving beyond the organizational principle of functional brain regions, this review promotes a circuit-centered perspective of locomotor regulation by higher-order states, and emphasizes the importance of individual network elements such as cell types and projection pathways. The realization that dysfunction within smaller, identifiable circuit elements can affect the larger network function supports more mechanistic and targeted therapeutic intervention in the treatment of motor network disorders.

12.
Nat Commun ; 12(1): 4156, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34230461

RESUMO

Fear extinction is an adaptive process whereby defensive responses are attenuated following repeated experience of prior fear-related stimuli without harm. The formation of extinction memories involves interactions between various corticolimbic structures, resulting in reduced central amygdala (CEA) output. Recent studies show, however, the CEA is not merely an output relay of fear responses but contains multiple neuronal subpopulations that interact to calibrate levels of fear responding. Here, by integrating behavioural, in vivo electrophysiological, anatomical and optogenetic approaches in mice we demonstrate that fear extinction produces reversible, stimulus- and context-specific changes in neuronal responses to conditioned stimuli in functionally and genetically defined cell types in the lateral (CEl) and medial (CEm) CEA. Moreover, we show these alterations are absent when extinction is deficient and that selective silencing of protein kinase C delta-expressing (PKCδ) CEl neurons impairs fear extinction. Our findings identify CEA inhibitory microcircuits that act as critical elements within the brain networks mediating fear extinction.


Assuntos
Núcleo Central da Amígdala/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Animais , Comportamento Animal , Condicionamento Clássico/fisiologia , Masculino , Memória , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo
13.
Neurobiol Dis ; 154: 105337, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33753289

RESUMO

TOR1A is the most common inherited form of dystonia with still unclear pathophysiology and reduced penetrance of 30-40%. ∆ETorA rats mimic the TOR1A disease by expression of the human TOR1A mutation without presenting a dystonic phenotype. We aimed to induce dystonia-like symptoms in male ∆ETorA rats by peripheral nerve injury and to identify central mechanism of dystonia development. Dystonia-like movements (DLM) were assessed using the tail suspension test and implementing a pipeline of deep learning applications. Neuron numbers of striatal parvalbumin+, nNOS+, calretinin+, ChAT+ interneurons and Nissl+ cells were estimated by unbiased stereology. Striatal dopaminergic metabolism was analyzed via in vivo microdialysis, qPCR and western blot. Local field potentials (LFP) were recorded from the central motor network. Deep brain stimulation (DBS) of the entopeduncular nucleus (EP) was performed. Nerve-injured ∆ETorA rats developed long-lasting DLM over 12 weeks. No changes in striatal structure were observed. Dystonic-like ∆ETorA rats presented a higher striatal dopaminergic turnover and stimulus-induced elevation of dopamine efflux compared to the control groups. Higher LFP theta power in the EP of dystonic-like ∆ETorA compared to wt rats was recorded. Chronic EP-DBS over 3 weeks led to improvement of DLM. Our data emphasizes the role of environmental factors in TOR1A symptomatogenesis. LFP analyses indicate that the pathologically enhanced theta power is a physiomarker of DLM. This TOR1A model replicates key features of the human TOR1A pathology on multiple biological levels and is therefore suited for further analysis of dystonia pathomechanism.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Distonia/fisiopatologia , Chaperonas Moleculares/fisiologia , Rede Nervosa/fisiopatologia , Neuropatia Ciática/fisiopatologia , Animais , Neurônios Dopaminérgicos/patologia , Distonia/genética , Distonia/patologia , Elevação dos Membros Posteriores/métodos , Elevação dos Membros Posteriores/fisiologia , Humanos , Masculino , Rede Nervosa/patologia , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Neuropatia Ciática/genética , Neuropatia Ciática/patologia
14.
Front Mol Neurosci ; 13: 152, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848605

RESUMO

A GWAS study recently demonstrated single nucleotide polymorphisms (SNPs) in the human GLRB gene of individuals with a prevalence for agoraphobia. GLRB encodes the glycine receptor (GlyRs) ß subunit. The identified SNPs are localized within the gene flanking regions (3' and 5' UTRs) and intronic regions. It was suggested that these nucleotide polymorphisms modify GlyRs expression and phenotypic behavior in humans contributing to an anxiety phenotype as a mild form of hyperekplexia. Hyperekplexia is a human neuromotor disorder with massive startle phenotypes due to mutations in genes encoding GlyRs subunits. GLRA1 mutations have been more commonly observed than GLRB mutations. If an anxiety phenotype contributes to the hyperekplexia disease pattern has not been investigated yet. Here, we compared two mouse models harboring either a mutation in the murine Glra1 or Glrb gene with regard to anxiety and startle phenotypes. Homozygous spasmodic animals carrying a Glra1 point mutation (alanine 52 to serine) displayed abnormally enhanced startle responses. Moreover, spasmodic mice exhibited significant changes in fear-related behaviors (freezing, rearing and time spent on back) analyzed during the startle paradigm, even in a neutral context. Spastic mice exhibit reduced expression levels of the full-length GlyRs ß subunit due to aberrant splicing of the Glrb gene. Heterozygous animals appear normal without an obvious behavioral phenotype and thus might reflect the human situation analyzed in the GWAS study on agoraphobia and startle. In contrast to spasmodic mice, heterozygous spastic animals revealed no startle phenotype in a neutral as well as a conditioning context. Other mechanisms such as a modulatory function of the GlyRs ß subunit within glycinergic circuits in neuronal networks important for fear and fear-related behavior may exist. Possibly, in human additional changes in fear and fear-related circuits either due to gene-gene interactions e.g., with GLRA1 genes or epigenetic factors are necessary to create the agoraphobia and in particular the startle phenotype.

15.
J Neurosci ; 40(33): 6289-6308, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32651187

RESUMO

Motor learning depends on synaptic plasticity between corticostriatal projections and striatal medium spiny neurons. Retrograde tracing from the dorsolateral striatum reveals that both layer II/III and V neurons in the motor cortex express BDNF as a potential regulator of plasticity in corticostriatal projections in male and female mice. The number of these BDNF-expressing cortical neurons and levels of BDNF protein are highest in juvenile mice when adult motor patterns are shaped, while BDNF levels in the adult are low. When mice are trained by physical exercise in the adult, BDNF expression in motor cortex is reinduced, especially in layer II/III projection neurons. Reduced expression of cortical BDNF in 3-month-old mice results in impaired motor learning while space memory is preserved. These findings suggest that activity regulates BDNF expression differentially in layers II/III and V striatal afferents from motor cortex and that cortical BDNF is essential for motor learning.SIGNIFICANCE STATEMENT Motor learning in mice depends on corticostriatal BDNF supply, and regulation of BDNF expression during motor learning is highest in corticostriatal projection neurons in cortical layer II/III.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/fisiologia , Aprendizagem/fisiologia , Atividade Motora , Córtex Motor/fisiologia , Neurônios/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Corpo Estriado/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vias Neurais/fisiologia , Plasticidade Neuronal , Condicionamento Físico Animal
16.
Exp Neurol ; 323: 113109, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31712125

RESUMO

Rapid-onset dystonia-parkinsonism (RDP) is a rare form of hereditary dystonia caused by loss-of-function mutations of the Na+/K+-ATPase α3 isoform (ATP1α3). An acute onset of generalized dystonia and parkinsonism after exposure to stress and an incomplete disease penetrance is described in RDP, thereby suggesting a gene-environmental interaction in individuals with a genetic predisposition for dystonia development. Dystonia is considered a central motor network disease and in line with this concept, alterations in cerebellar neuronal firing have been described in RDP mouse models, but the pathogenic role of the basal ganglia remains unclear. We have mimicked RDP pharmacologically by simultaneous perfusion of the selective ATP1α3-blocker ouabain into the striatum and cerebellum of mice, followed by repeated exposure to mild motor stress. Ouabain-perfused RDP mice developed dystonia-like movements, which were exacerbated by exposure to sensorimotor stress. Compared to control mice, ouabain perfusion of the striatum led to dendritic spine loss of medium spiny neurons in addition to loss of cholinergic and GABAergic interneurons in the striatum. High-pressure liquid chromatography analyses revealed significant dopamine (DA) depletion and increased DA and serotonergic turnover, while qPCR analyses displayed reduction of glutamatergic receptors. Adding stress to the ouabain-predisposed brain, however, resulted in an elevation of the striatal DA metabolism back to the level of control animals. Our results indicate an ouabain-induced basal ganglia and cerebellar motor network dysfunction characterized by structural and neurochemical alterations of striatal dopaminergic, cholinergic and glutamatergic pathways that represent a motor endophenotype of RDP mutation carriers. Challenging the motor circuit by sensorimotor stress causes exacerbation of dystonia-like movements tightly linked to a hyperdopaminergic state in the striatum. Our observations support a gene-environment interaction or "second-hit" hypothesis in the symptomatogenesis of RDP.


Assuntos
Corpo Estriado/fisiopatologia , Dopamina/metabolismo , Distúrbios Distônicos/metabolismo , Distúrbios Distônicos/fisiopatologia , Animais , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/fisiologia , Angústia Psicológica
17.
Neuron ; 104(6): 1180-1194.e7, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31727549

RESUMO

Memory of cues associated with threat is critical for survival and a leading model for elucidating how sensory information is linked to adaptive behavior by learning. Although the brain-wide circuits mediating auditory threat memory have been intensely investigated, it remains unclear whether the auditory cortex is critically involved. Here we use optogenetic activity manipulations in defined cortical areas and output pathways, viral tracing, pathway-specific in vivo 2-photon calcium imaging, and computational analyses of population plasticity to reveal that the auditory cortex is selectively required for conditioning to complex stimuli, whereas the adjacent temporal association cortex controls all forms of auditory threat memory. More temporal areas have a stronger effect on memory and more neurons projecting to the lateral amygdala, which control memory to complex stimuli through a balanced form of population plasticity that selectively supports discrimination of significant sensory stimuli. Thus, neocortical processing plays a critical role in cued threat memory.


Assuntos
Comportamento Animal/fisiologia , Memória/fisiologia , Neocórtex/fisiologia , Animais , Medo/fisiologia , Aprendizagem/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
18.
Curr Opin Neurobiol ; 49: 141-147, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29522976

RESUMO

The central nucleus of the amygdala (CEA) is a striatum-like structure orchestrating a diverse set of adaptive behaviors, including defensive and appetitive responses [1-3]. Studies using anatomical, electrophysiological, imaging and optogenetic approaches revealed that the CEA network consists of recurrent inhibitory circuits comprised of precisely connected functionally and genetically defined cell types that can select and control specific behavioral outputs [3,4,5•,6•,7-9,11,12]. While bivalent functionality of the CEA in adaptive behavior has been clearly demonstrated, we are just beginning to understand to which degree individual CEA circuit elements are functionally segregated or overlapping. Importantly, recent studies seem to suggest that optogenetic manipulations of the same, or overlapping cell populations can give rise to distinct, or sometimes even opposite, behavioral phenotypes [5•,6•,9-12]. In this review, we discuss recent progress in our understanding of how defined CEA circuits can control defensive and appetitive behaviors, and how seemingly contradictory results could point to an integrated concept of CEA function.


Assuntos
Adaptação Psicológica/fisiologia , Núcleo Central da Amígdala/fisiologia , Vias Neurais/fisiologia , Animais , Humanos , Optogenética
19.
Nature ; 542(7639): 96-100, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28117439

RESUMO

When faced with threat, the survival of an organism is contingent upon the selection of appropriate active or passive behavioural responses. Freezing is an evolutionarily conserved passive fear response that has been used extensively to study the neuronal mechanisms of fear and fear conditioning in rodents. However, rodents also exhibit active responses such as flight under natural conditions. The central amygdala (CEA) is a forebrain structure vital for the acquisition and expression of conditioned fear responses, and the role of specific neuronal sub-populations of the CEA in freezing behaviour is well-established. Whether the CEA is also involved in flight behaviour, and how neuronal circuits for active and passive fear behaviour interact within the CEA, are not yet understood. Here, using in vivo optogenetics and extracellular recordings of identified cell types in a behavioural model in which mice switch between conditioned freezing and flight, we show that active and passive fear responses are mediated by distinct and mutually inhibitory CEA neurons. Cells expressing corticotropin-releasing factor (CRF+) mediate conditioned flight, and activation of somatostatin-positive (SOM+) neurons initiates passive freezing behaviour. Moreover, we find that the balance between conditioned flight and freezing behaviour is regulated by means of local inhibitory connections between CRF+ and SOM+ neurons, indicating that the selection of appropriate behavioural responses to threat is based on competitive interactions between two defined populations of inhibitory neurons, a circuit motif allowing for rapid and flexible action selection.


Assuntos
Reação de Fuga/fisiologia , Medo/fisiologia , Medo/psicologia , Reação de Congelamento Cataléptica/fisiologia , Inibição Neural , Neurônios/fisiologia , Animais , Núcleo Central da Amígdala/citologia , Núcleo Central da Amígdala/fisiologia , Hormônio Liberador da Corticotropina/metabolismo , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Vias Neurais , Optogenética , Somatostatina/metabolismo
20.
Nature ; 534(7606): 206-12, 2016 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-27279213

RESUMO

Survival in threatening situations depends on the selection and rapid execution of an appropriate active or passive defensive response, yet the underlying brain circuitry is not understood. Here we use circuit-based optogenetic, in vivo and in vitro electrophysiological, and neuroanatomical tracing methods to define midbrain periaqueductal grey circuits for specific defensive behaviours. We identify an inhibitory pathway from the central nucleus of the amygdala to the ventrolateral periaqueductal grey that produces freezing by disinhibition of ventrolateral periaqueductal grey excitatory outputs to pre-motor targets in the magnocellular nucleus of the medulla. In addition, we provide evidence for anatomical and functional interaction of this freezing pathway with long-range and local circuits mediating flight. Our data define the neuronal circuitry underlying the execution of freezing, an evolutionarily conserved defensive behaviour, which is expressed by many species including fish, rodents and primates. In humans, dysregulation of this 'survival circuit' has been implicated in anxiety-related disorders.


Assuntos
Reação de Fuga/fisiologia , Reação de Congelamento Cataléptica/fisiologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Substância Cinzenta Periaquedutal/citologia , Substância Cinzenta Periaquedutal/fisiologia , Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/fisiologia , Animais , Neurônios GABAérgicos/fisiologia , Ácido Glutâmico/metabolismo , Masculino , Bulbo/citologia , Bulbo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Inibição Neural/fisiologia , Técnicas de Rastreamento Neuroanatômico , Optogenética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...