Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2588: 201-216, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36418690

RESUMO

Selective markers employed in classical mutagenesis methods using natural genetic transformation can affect gene expression, risk phenotypic effects, and accumulate as unwanted genes during successive mutagenesis cycles. In this chapter, we present a protocol for markerless genome editing in Streptococcus mutans and Streptococcus pneumoniae achieved with an efficient method for natural transformation. High yields of transformants are obtained by combining the unimodal state of competence developed after treatment of S. mutans with sigX-inducing peptide pheromone (XIP) in a chemically defined medium (CDM) or of S. pneumoniae with the competence-stimulating peptide (CSP) together with use of a donor amplicon carrying extensive flanking homology. This combination ensures efficient and precise integration of a new allele by the recombination machinery present in competent cells.


Assuntos
Proteínas de Bactérias , Edição de Genes , Proteínas de Bactérias/metabolismo , Streptococcus/genética , Streptococcus/metabolismo , Streptococcus mutans/genética , Peptídeos/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(8): 3211-3220, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30718427

RESUMO

Bacterial cell division and peptidoglycan (PG) synthesis are orchestrated by the coordinated dynamic movement of essential protein complexes. Recent studies show that bidirectional treadmilling of FtsZ filaments/bundles is tightly coupled to and limiting for both septal PG synthesis and septum closure in some bacteria, but not in others. Here we report the dynamics of FtsZ movement leading to septal and equatorial ring formation in the ovoid-shaped pathogen, Streptococcus pneumoniae Conventional and single-molecule total internal reflection fluorescence microscopy (TIRFm) showed that nascent rings of FtsZ and its anchoring and stabilizing proteins FtsA and EzrA move out from mature septal rings coincident with MapZ rings early in cell division. This mode of continuous nascent ring movement contrasts with a failsafe streaming mechanism of FtsZ/FtsA/EzrA observed in a ΔmapZ mutant and another Streptococcus species. This analysis also provides several parameters of FtsZ treadmilling in nascent and mature rings, including treadmilling velocity in wild-type cells and ftsZ(GTPase) mutants, lifetimes of FtsZ subunits in filaments and of entire FtsZ filaments/bundles, and the processivity length of treadmilling of FtsZ filament/bundles. In addition, we delineated the motion of the septal PBP2x transpeptidase and its FtsW glycosyl transferase-binding partner relative to FtsZ treadmilling in S. pneumoniae cells. Five lines of evidence support the conclusion that movement of the bPBP2x:FtsW complex in septa depends on PG synthesis and not on FtsZ treadmilling. Together, these results support a model in which FtsZ dynamics and associations organize and distribute septal PG synthesis, but do not control its rate in S. pneumoniae.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Membrana/genética , Proteínas de Ligação às Penicilinas/genética , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/genética , Divisão Celular/genética , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/ultraestrutura , Citoesqueleto/genética , Citoesqueleto/ultraestrutura , Escherichia coli/genética , GTP Fosfo-Hidrolases/genética , Humanos , Microscopia de Fluorescência , Peptidoglicano/biossíntese , Peptidoglicano/genética , Infecções Pneumocócicas/genética , Streptococcus pneumoniae/patogenicidade , Streptococcus pneumoniae/ultraestrutura
3.
Methods Mol Biol ; 1537: 233-247, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27924598

RESUMO

Selective markers employed in classical mutagenesis methods using natural genetic transformation can affect gene expression, risk phenotypic effects, and accumulate as unwanted genes during successive mutagenesis cycles. In this chapter, we present a protocol for markerless genome editing in Streptococcus mutans and Streptococcus pneumoniae achieved with an efficient method for natural transformation. High yields of transformants are obtained by combining the unimodal state of competence developed after treatment of S. mutans with sigX-inducing peptide pheromone (XIP) in a chemically defined medium (CDM) or of S. pneumoniae with the competence-stimulating peptide (CSP) together with use of a donor amplicon carrying extensive flanking homology. This combination ensures efficient and precise integration of a new allele by the recombination machinery present in competent cells.


Assuntos
Edição de Genes , Marcadores Genéticos , Genoma Bacteriano , Streptococcus/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Genes Bacterianos , Mutação , Deleção de Sequência , Fator sigma/metabolismo , Fator sigma/farmacologia , Transformação Bacteriana/efeitos dos fármacos
4.
J Bacteriol ; 198(17): 2370-8, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27353650

RESUMO

UNLABELLED: Streptococcus pneumoniae is able to integrate exogenous DNA into its genome by natural genetic transformation. Transient accumulation of high levels of the only S. pneumoniae alternative σ factor is insufficient for development of full competence without expression of a second competence-specific protein, ComW. The ΔcomW mutant is 10(4)-fold deficient in the yield of recombinants, 10-fold deficient in the amount of σ(X) activity, and 10-fold deficient in the amount of σ(X) protein. The critical role of ComW during transformation can be partially obviated by σ(A) mutations clustered on surfaces controlling affinity for core RNA polymerase (RNAP). While strains harboring σ(A) mutations in the comW mutant background were transforming at higher rates, the mechanism of transformation restoration was not clear. To investigate the mechanism of transformation restoration, we measured late gene expression in σ(A)* suppressor strains. Restoration of late gene expression was observed in ΔcomW σ(A)* mutants, indicating that a consequence of the σ(A)* mutations is, at least, to restore σ(X) activity. Competence kinetics were normal in ΔcomW σ(A)* strains, indicating that strains with restored competence exhibit the same pattern of transience as wild-type (WT) strains. We also identified a direct interaction between ComW and σ(X) using the yeast two-hybrid (Y2H) assay. Taken together, these data are consistent with the idea that ComW increases σ(X) access to core RNAP, pointing to a direct role of ComW in σ factor exchange during genetic transformation. However, the lack of late gene shutoff in ΔcomW mutants also points to a potential new role for ComW in competence shutoff. IMPORTANCE: The sole alternative sigma factor of the streptococci, SigX, regulates development of competence for genetic transformation, a widespread mechanism of adaptation by horizontal gene transfer in this genus. The transient appearance of this sigma factor is strictly controlled at the levels of transcription and stability. This report shows that it is also controlled at the point of its substitution for SigA by a second transient competence-specific protein, ComW.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Fator sigma/metabolismo , Streptococcus pneumoniae/genética , Transformação Genética , Proteínas de Bactérias/genética , Mutação , Fator sigma/genética
5.
J Bacteriol ; 196(21): 3724-34, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25112479

RESUMO

Competence for genetic transformation in the genus Streptococcus depends on an alternative sigma factor, σ(X), for coordinated synthesis of 23 proteins, which together establish the X state by permitting lysis of incompetent streptococci, uptake of DNA fragments, and integration of strands of that DNA into the resident genome. Initiation of transient accumulation of high levels of σ(X) is coordinated between cells by transcription factors linked to peptide pheromone signals. In Streptococcus pneumoniae, elevated σ(X) is insufficient for development of full competence without coexpression of a second competence-specific protein, ComW. ComW, shared by eight species in the Streptococcus mitis and Streptococcus anginosus groups, is regulated by the same pheromone circuit that controls σ(X), but its role in expression of the σ(X) regulon is unknown. Using the strong, but not absolute, dependence of transformation on comW as a selective tool, we collected 27 independent comW bypass mutations and mapped them to 10 single-base transitions, all within rpoD, encoding the primary sigma factor subunit of RNA polymerase, σ(A). Eight mapped to sites in rpoD region 4 that are implicated in interaction with the core ß subunit, indicating that ComW may act to facilitate competition of the alternative sigma factor σ(X) for access to core polymerase.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Fator sigma/metabolismo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Transformação Genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação Proteica , Fator sigma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...