Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 839: 156216, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35643133

RESUMO

The Environmental Noise Directive (2002/49/EC) requires all European Union Member States to produce strategic noise maps using a common assessment methodology: CNOSSOS-EU. The reliability of CNOSSOS-EU railway noise evaluation is dependent on the input vehicle and track transfer functions. The CNOSSOS-EU default database contains the currently available choices for these transfer functions. However, these available transfer functions are limited and of insufficient quality, resulting in large errors in noise level calculations. An approach is presented, introducing an established analytical railway rolling noise calculation technique (TWINS), to extract more reliable and specific transfer functions. A case study consisting of railway rolling noise mitigation measures is defined and used as the basis for extracting and testing these transfer functions. The extracted transfer functions reduce the average deviation between CNOSSOS-EU and reference calculations using TWINS from 6.1 dB(A) to 0.8 dB(A) in absolute sound power levels, and from 1.2 db(A) to 0.3 dB(A) in estimates of noise reduction potential for the defined mitigation measures. Application of this approach shows potential to improve the quality and depth of the existing CNOSSOS-EU default database. This may lead to more reliable estimations of railway noise in the strategic noise maps and the subsequent assessment of its harmful effects.


Assuntos
Exposição Ambiental , Ruído , Europa (Continente) , União Europeia , Ruído/prevenção & controle , Reprodutibilidade dos Testes
2.
Arch Dis Child Fetal Neonatal Ed ; 102(2): F136-F141, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27694399

RESUMO

BACKGROUND AND OBJECTIVE: The American Academy of Pediatrics recommends that preterm infants complete a predischarge 'car seat challenge' observation for cardiorespiratory compromise while in a car seat. This static challenge does not consider the more upright position in a car or the vibration of the seat when the car is moving. This pilot study was designed to assess the cardiorespiratory effects of vibration, mimicking the effect of being in a moving car, on preterm and term infants. METHODS: A simulator was designed to reproduce vertical vibration similar to that in a rear-facing car seat at 30 mph. 19 healthy newborn term and 21 preterm infants, ready for hospital discharge, underwent cardiorespiratory measurements while lying flat in a cot (baseline), static in the seat (30°), simulator (40°) and during motion (vibration 40°). RESULTS: Median test age was 13 days (range 1-65 days) and median weight was 2.5 kg (IQR: 2.1-3.1 kg).Compared with baseline observations, only the total number of desaturations was significantly increased when infants were placed at 30° (p=0.03). At 40°, or with vibration, respiratory and heart rates increased and oxygen saturation decreased significantly. Profound desaturations <85% significantly increased during motion, regardless of gestational age. CONCLUSIONS: This is the first study to assess the effect of motion on infants seated in a car safety seat. Term and preterm infants showed significant signs of potentially adverse cardiorespiratory effects in the upright position at 40°, particularly with simulated motion, not identified in the standard challenge. A larger study is required to investigate the significance of these results.


Assuntos
Aptidão Cardiorrespiratória , Sistemas de Proteção para Crianças , Frequência Cardíaca/fisiologia , Equipamentos para Lactente , Movimento (Física) , Taxa Respiratória/fisiologia , Feminino , Coração/fisiologia , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Pulmão/fisiologia , Masculino , Veículos Automotores , Oximetria/métodos , Alta do Paciente , Projetos Piloto
3.
Ind Health ; 48(5): 654-62, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20953082

RESUMO

Models of the vertical apparent mass of the human body are mostly restricted to a sitting posture unsupported by a backrest and ignore the variations in apparent mass associated with changes in posture and changes in the magnitude of vibration. Using findings from experimental research, this study fitted a single degree-of-freedom lumped parameter model to the measured vertical apparent mass of the body measured with a range of sitting postures and vibration magnitudes. The resulting model reflects the effects of reclining a rigid backrest or reclining a foam backrest (from 0 to 30 degrees), the effects of moving the hands from the lap to a steering wheel, the effects of moving the horizontal position of the feet, and the effects of vibration magnitude (from 0.125 to 1.6 ms(-2) r.m.s.). The error between the modelled and the measured apparent mass was minimised, for both the apparent masses of individual subjects and the median apparent masses of groups of 12 subjects, for each sitting posture and each vibration magnitude. Trends in model parameters, the damping ratios, and the damped natural frequencies were identified as a function of the model variables and show the effects of posture and vibration magnitude on body dynamics. For example, contact with a rigid backrest increased the derived damped natural frequency of the principal resonance as a result of reduced moving mass and increased stiffness. When the rigid backrest was reclined from 0 to 30º, the damping decreased and the resonance frequency increased as a result of reduced moving mass. It is concluded that, by appropriate variations in model parameters, a single degree-of-freedom model can provide a useful fit to the vertical apparent mass of the human body over a wide range of postures and vibration magnitudes. When measuring or modelling seat transmissibility, it may be difficult to justify an apparent mass model with more than a single degree-of-freedom if it does not reflect the large influences of vibration magnitude, body posture, and individual variability.


Assuntos
Modelos Biológicos , Postura/fisiologia , Vibração/efeitos adversos , Condução de Veículo , Fenômenos Biomecânicos/fisiologia , Humanos , Masculino , Equipamentos de Proteção , Suporte de Carga/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...