Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 13: 745, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31456654

RESUMO

Optical stimulation and imaging of neurons deep in the brain require implantable optical neural probes. External optical access to deeper regions of the brain is limited by scattering and absorption of light as it propagates through tissue. Implantable optoelectronic probes capable of high-resolution light delivery and high-density neural recording are needed for closed-loop manipulation of neural circuits. Micro-light-emitting diodes (µLEDs) have been used for optical stimulation, but predominantly on rigid silicon or sapphire substrates. Flexible polymer neural probes would be preferable for chronic applications since they cause less damage to brain tissue. Flexible µLED neural probes have been recently implemented by flip-chip bonding of commercially available µLED chips onto flexible substrates. Here, we demonstrate a monolithic design for flexible optoelectronic neural interfaces with embedded gallium nitride µLEDs that can be microfabricated at wafer-scale. Parylene C is used as the substrate and insulator due to its biocompatibility, compliance, and optical transparency. We demonstrate one-dimensional and two-dimensional individually-addressable µLED arrays. Our µLEDs have sizes as small as 22 × 22 µm in arrays of up to 32 µLEDs per probe shank. These devices emit blue light at a wavelength of 445 nm, suitable for stimulation of channelrhodopsin-2, with output powers greater than 200 µW at 2 mA. Our flexible optoelectronic probes are double-sided and can illuminate brain tissue from both sides. Recording electrodes are co-fabricated with µLEDs on the front- and backside of the optoelectronic probes for electrophysiology recording of neuronal activity from the volumes of tissue on the front- and backside simultaneously with bi-directional optical stimulation.

2.
Nano Lett ; 11(3): 1070-5, 2011 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-21275424

RESUMO

We investigate band gap tuning of bilayer graphene between hexagonal boron nitride sheets, by external electric fields. Using density functional theory, we show that the gap is continuously tunable from 0 to 0.2 eV and is robust to stacking disorder. Moreover, boron nitride sheets do not alter the fundamental response from that of free-standing bilayer graphene, apart from additional screening. The calculations suggest that graphene-boron nitride heterostructures could provide a viable route to graphene-based electronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...