Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 11(10): e0164203, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27716845

RESUMO

Reports of American shad fecundity identify two important themes regarding egg production in fishes. First, geographic variation occurs and is biologically meaningful. Shad annual fecundity decreases with increasing latitude, but predicted lifetime fecundity does not, because of a counter-gradient of survival probability, all of which can explain the adaptive significance of natal homing. Second, the appropriate method of measuring fecundity depends on the pattern of oocyte development. Historically, the relatively simple determinate-fecundity method was used; however, a recent study in a Virginia river indicates that this method may be biased, requiring the more complicated indeterminate method. We address both themes with collections from the 2015 shad spawning run in the Connecticut River, USA. Criteria for using a determinate method were satisfied for this northern population: 1) a size gap evident in the oocyte size frequency distribution, indicating group-synchronous development of yolked oocytes; 2) a decline, early in spawning, in the standing stock of yolked oocytes; and 3) low levels of atresia at the end of spawning. The determinate-method estimate of American shad annual (2015) fecundity (303,000 ± 73,400; mean ± sd) overlapped historic estimates for this and a neighboring river. The indeterminate-method estimate of annual (2015) fecundity (311,500 ± 4,500 sd) was not significantly different from the determinate-method estimate (Student's t-test, P > 0.05). In contrast, indeterminate-method estimates of annual fecundity for a Virginia population were twice as high as that measured by the determinate method in the past. This can all be explained by fundamentally different patterns of oogenesis (i.e., group synchrony versus asynchrony with respect to yolk development) at different latitudes. American shad, which is distributed within its native range from the Canadian maritimes to Florida, USA (50-30°N), may be particularly well suited to evaluate intra-specific variation in oocyte development, a relatively unexplored life history trait.


Assuntos
Fertilidade/fisiologia , Peixes/crescimento & desenvolvimento , Oócitos/crescimento & desenvolvimento , Animais , Feminino , New England , Oogênese/fisiologia , Reprodução/fisiologia , Estações do Ano , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...