Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bull Math Biol ; 85(11): 113, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37823924

RESUMO

Computing has revolutionised the study of complex nonlinear systems, both by allowing us to solve previously intractable models and through the ability to visualise solutions in different ways. Using ubiquitous computing infrastructure, we provide a means to go one step further in using computers to understand complex models through instantaneous and interactive exploration. This ubiquitous infrastructure has enormous potential in education, outreach and research. Here, we present VisualPDE, an online, interactive solver for a broad class of 1D and 2D partial differential equation (PDE) systems. Abstract dynamical systems concepts such as symmetry-breaking instabilities, subcritical bifurcations and the role of initial data in multistable nonlinear models become much more intuitive when you can play with these models yourself, and immediately answer questions about how the system responds to changes in parameters, initial conditions, boundary conditions or even spatiotemporal forcing. Importantly, VisualPDE is freely available, open source and highly customisable. We give several examples in teaching, research and knowledge exchange, providing high-level discussions of how it may be employed in different settings. This includes designing web-based course materials structured around interactive simulations, or easily crafting specific simulations that can be shared with students or collaborators via a simple URL. We envisage VisualPDE becoming an invaluable resource for teaching and research in mathematical biology and beyond. We also hope that it inspires other efforts to make mathematics more interactive and accessible.


Assuntos
Conceitos Matemáticos , Modelos Biológicos , Humanos , Dinâmica não Linear , Matemática , Estudantes
2.
J Eng Math ; 107(1): 179-200, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32009672

RESUMO

In recent experiments, Blanc et al. (J Fluid Mech 746:R4, 2014) dropped a heavy sphere through a concentrated suspension of smaller, neutrally buoyant particles. They found that the application of a lateral oscillatory shear flow caused the heavy ball to fall faster on average, and that for highly concentrated suspensions, at certain moments of the cycle of shear oscillation, the heavy ball moved upwards. We use Stokesian Dynamics to model these experiments and other related scenarios. We show how the motion of the heavy particle and the microstructure of the suspension depend on two key dimensionless parameters: the frequency of the oscillations (relative to a typical settling time) and the strength of repulsive interparticle forces, relative to the buoyancy-adjusted weight of the heavy ball. We offer a mechanism which describes some of the observed behaviours: the formation and breakup of vertical repulsion chains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...