Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Diet Suppl ; 19(4): 534-549, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33754923

RESUMO

Purpose: To determine the effects of dietary nitrate supplementation, in the form of red spinach extract (RSE), on adaptations to offseason training in collegiate athletes.Methods: Sixteen Division I male baseball athletes (20.5 ± 1.7y, 90.4 ± 0.5 kg) enrolled in this study and were randomized into a RSE (n = 8) or placebo (n = 8; PL) group. Athletes completed an 11-week resistance training program during the offseason, which consisted of 2-3 workouts per week of upper and lower-body exercises and baseball-specific training. Athletes consumed a RSE (2 g; 180 mg nitrate) or PL supplement daily for the entire offseason training program. Pre and post-training, all athletes underwent one-repetition maximum (1RM) strength testing for the bench press and completed a Wingate anaerobic cycle test (WAnT). Body composition analysis was completed via a 4-compartment model, as well as muscle thickness (MT) measurement of the rectus femoris (RF) and vastus lateralis (VL) via ultrasonography. Resting heart rate and blood pressure (BP) were also obtained. Separate repeated measures analyses of variance were used to analyze all data.Results: Significant (p ≤ 0.05) main effects for time were observed for improved bench 1RM, fat-free mass, body fat percentage, RF MT, and VL MT. No significant group x time interactions (p > 0.05) were found for any measure of performance, body composition, or cardiovascular health. However, a trend for improved peak power in the WAnT was observed (p = 0.095; η2=0.200).Conclusions: These data suggest that daily RSE supplementation had no effect on performance, body composition, or cardiovascular measures in male Division I baseball players following offseason training.


Assuntos
Força Muscular , Treinamento Resistido , Atletas , Composição Corporal , Suplementos Nutricionais , Humanos , Masculino , Músculo Esquelético , Nitratos/farmacologia , Desempenho Físico Funcional
2.
J Strength Cond Res ; 34(11): 3173-3181, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33105368

RESUMO

Toohey, JC, Townsend, JR, Johnson, SB, Toy, AM, Vantrease, WC, Bender, D, Crimi, CC, Stowers, KL, Ruiz, MD, VanDusseldorp, TA, Feito, Y, and Mangine, GT. Effects of probiotic (Bacillus subtilis) supplementation during offseason resistance training in female Division I athletes. J Strength Cond Res 34(11): 3173-3181, 2020-We examined the effects of probiotic (Bacillus subtilis) supplementation during offseason training in collegiate athletes. Twenty-three Division I female athletes (19.6 ± 1.0 years, 67.5 ± 7.4 kg, and 170.6 ± 6.8 cm) participated in this study and were randomized into either a probiotic (n = 11; DE111) or placebo (n = 12; PL) group while counterbalancing groups for sport. Athletes completed a 10-week resistance training program during the offseason, which consisted of 3-4 workouts per week of upper- and lower-body exercises and sport-specific training. Athletes consumed DE111 (DE111; 5 billion CFU/day) or PL supplement daily for the entire 10-week program. Before and after training, all athletes underwent 1 repetition maximum (1RM) strength testing (squat, deadlift, and bench press), performance testing (vertical jump and pro-agility), and isometric midthigh pull testing. Body composition (body fat [BF]%) was completed using BODPOD and bioelectrical impedance analysis, as well as muscle thickness (MT) measurement of the rectus femoris (RF) and vastus lateralis using ultrasonography. Separate repeated-measures analyses of variance were used to analyze all data. Significant (p ≤ 0.05) main effects for time were observed for improved squat 1RM, deadlift 1RM, bench press 1RM, vertical jump, RF MT, and BF%. Of these, a significant group × time interaction was noted for BF% (p = 0.015), where greater reductions were observed in DE111 (-2.05 ± 1.38%) compared with PL (-0.2 ± 1.6%). No other group differences were observed. These data suggest that probiotic consumption in conjunction with post-workout nutrition had no effect on physical performance but may improve body composition in female Division I soccer and volleyball players after offseason training.


Assuntos
Suplementos Nutricionais , Força Muscular , Músculo Esquelético/fisiologia , Probióticos/administração & dosagem , Treinamento Resistido , Atletas , Bacillus subtilis , Composição Corporal , Feminino , Humanos , Futebol/fisiologia , Ultrassonografia , Voleibol/psicologia , Adulto Jovem
3.
Sports (Basel) ; 6(3)2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-30049931

RESUMO

We sought to determine the effects of probiotic supplementation (Bacillus subtilis DE111; 1 billion CFU∙d-1) on markers of immune and hormonal status in collegiate male athletes following 12 weeks of offseason training. Twenty-five Division I male baseball athletes (20.1 ± 1.5 years, 85.5 ± 10.5 kg, 184.7 ± 6.3 cm) participated in this double blind, placebo-controlled, randomized study. Participants were randomly assigned to a probiotic (PRO; n = 13) or placebo (PL; n = 12) group. Pre- and post-training, all athletes provided resting blood and saliva samples. Circulating concentrations of testosterone, cortisol, TNF-α, IL-10, and zonulin were examined in the blood, while salivary immunoglobulin A (SIgA) and SIgM were assayed as indicators of mucosal immunity. Separate analyses of covariance (ANCOVA) were performed on all measures collected post intervention. No differences in measures of body composition or physical performance were seen between groups. TNF-α concentrations were significantly (p = 0.024) lower in PRO compared to PL, while there were no significant group differences in any other biochemical markers examined. A main effect for time was observed (p < 0.05) for increased testosterone (p = 0.045), IL-10 (p = 0.048), SIgA rate (p = 0.031), and SIgM rate (p = 0.002) following offseason training. These data indicate that probiotic supplementation had no effect on body composition, performance, hormonal status, or gut permeability, while it may attenuate circulating TNF-α in athletes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...