Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemMedChem ; : e202400284, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38932712

RESUMO

A conserved intracellular allosteric binding site (IABS) was recently identified at several G protein-coupled receptors (GPCRs). This target site allows the binding of allosteric modulators and enables a new mode of GPCR inhibition. Herein, we report the development of a NanoBRET-based assay platform based on the fluorescent ligand LT221 (5), to detect intracellular binding to CCR6 and CXCR1, two chemokine receptors that have been pursued as promising drug targets in inflammation and immuno-oncology. Our assay platform enables cell-free as well as cellular NanoBRET-based binding studies in a nonisotopic and straightforward manner. By combining this screening platform with a previously reported CXCR2 assay, we investigated CXCR1/CXCR2/CCR6 selectivity profiles for both known and novel squaramide analogues derived from navarixin, a known intracellular CXCR1/CXCR2 antagonist and phase II clinical candidate for the treatment of pulmonary diseases. By means of these studies we identified compound 10, a previously reported tert-butyl analogue of navarixin, as a low nanomolar intracellular CCR6 antagonist. Further, our assay platform clearly indicated intracellular binding of the CCR6 antagonist PF-07054894, currently evaluated in phase I clinical trials for the treatment of ulcerative colitis, thereby providing profound evidence for the existence and the pharmacological relevance of a druggable IABS at CCR6.

2.
J Med Chem ; 66(21): 14787-14814, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37902787

RESUMO

Dysregulation of both tubulin deacetylases sirtuin 2 (Sirt2) and the histone deacetylase 6 (HDAC6) has been associated with the pathogenesis of cancer and neurodegeneration, thus making these two enzymes promising targets for pharmaceutical intervention. Herein, we report the design, synthesis, and biological characterization of the first-in-class dual Sirt2/HDAC6 inhibitors as molecular tools for dual inhibition of tubulin deacetylation. Using biochemical in vitro assays and cell-based methods for target engagement, we identified Mz325 (33) as a potent and selective inhibitor of both target enzymes. Inhibition of both targets was further confirmed by X-ray crystal structures of Sirt2 and HDAC6 in complex with building blocks of 33. In ovarian cancer cells, 33 evoked enhanced effects on cell viability compared to single or combination treatment with the unconjugated Sirt2 and HDAC6 inhibitors. Thus, our dual Sirt2/HDAC6 inhibitors are important new tools to study the consequences and the therapeutic potential of dual inhibition of tubulin deacetylation.


Assuntos
Sirtuína 2 , Tubulina (Proteína) , Desacetilase 6 de Histona , Sirtuína 2/metabolismo , Tubulina (Proteína)/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Acetilação
3.
J Med Chem ; 66(14): 9916-9933, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37463496

RESUMO

Herein, we report the structure-based development of fluorescent ligands targeting the intracellular allosteric binding site (IABS) of CXC chemokine receptor 2 (CXCR2), a G protein-coupled receptor (GPCR) that has been pursued as a drug target in oncology and inflammation. Starting from the cocrystallized intracellular CXCR2 antagonist 00767013 (1), tetramethylrhodamine (TAMRA)-labeled CXCR2 ligands were designed, synthesized, and tested for their suitability as fluorescent reporters to probe binding to the IABS of CXCR2. By means of these studies, we developed Mz438 (9a) as a high-affinity and selective fluorescent CXCR2 ligand, enabling cell-free as well as cellular NanoBRET-based binding studies in a nonisotopic and high-throughput manner. Further, we show that 9a can be used as a tool to visualize intracellular target engagement for CXCR2 via fluorescence microscopy. Thus, our small-molecule-based fluorescent CXCR2 ligand 9a represents a promising tool for future studies of CXCR2 pharmacology.


Assuntos
Receptores Acoplados a Proteínas G , Receptores de Interleucina-8B , Sítio Alostérico , Ligantes , Ligação Proteica , Receptores Acoplados a Proteínas G/metabolismo
4.
Chemistry ; 29(1): e202202565, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36193681

RESUMO

A conserved intracellular allosteric binding site (IABS) has recently been identified at several G protein-coupled receptors (GPCRs). Ligands targeting the IABS, so-called intracellular allosteric antagonists, are highly promising compounds for pharmaceutical intervention and currently evaluated in several clinical trials. Beside co-crystal structures that laid the foundation for the structure-based development of intracellular allosteric GPCR antagonists, small molecule tools that enable an unambiguous identification and characterization of intracellular allosteric GPCR ligands are of utmost importance for drug discovery campaigns in this field. Herein, we discuss recent approaches that leverage cellular target engagement studies for the IABS and thus play a critical role in the evaluation of IABS-targeted ligands as potential therapeutic agents.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Sítio Alostérico , Receptores Acoplados a Proteínas G/metabolismo , Ligantes , Regulação Alostérica
5.
ACS Chem Biol ; 17(8): 2142-2152, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35838163

RESUMO

Fluorescently labeled ligands are versatile molecular tools to study G protein-coupled receptors (GPCRs) and can be used for a range of different applications, including bioluminescence resonance energy transfer (BRET) assays. Here, we report the structure-based development of fluorescent ligands targeting the intracellular allosteric binding site (IABS) of the CC chemokine receptor 2 (CCR2), a class A GPCR that has been pursued as a drug target in oncology and inflammation. Starting from previously reported intracellular CCR2 antagonists, several tetramethylrhodamine (TAMRA)-labeled CCR2 ligands were designed, synthesized, and tested for their suitability as fluorescent reporters to probe binding to the IABS of CCR2. By means of these studies, we developed 14 as a fluorescent CCR2 ligand, enabling cell-free as well as cellular NanoBRET-based binding studies in a non-isotopic and high-throughput manner. Further, we show that 14 can be used as a tool for fragment-based screening approaches. Thus, our small-molecule-based fluorescent CCR2 ligand 14 represents a promising tool for future studies of CCR2 pharmacology.


Assuntos
Receptores CCR2 , Receptores Acoplados a Proteínas G , Sítio Alostérico , Ligantes , Ligação Proteica , Receptores CCR2/química , Receptores CCR2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
6.
Angew Chem Int Ed Engl ; 61(12): e202116782, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-34936714

RESUMO

A conserved intracellular allosteric binding site (IABS) has recently been identified at several G protein-coupled receptors (GPCRs). Starting from vercirnon, an intracellular C-C chemokine receptor type 9 (CCR9) antagonist and previous phase III clinical candidate for the treatment of Crohn's disease, we developed a chemical biology toolbox targeting the IABS of CCR9. We first synthesized a fluorescent ligand enabling equilibrium and kinetic binding studies via NanoBRET as well as fluorescence microscopy. Applying this molecular tool in a membrane-based setup and in living cells, we discovered a 4-aminopyrimidine analogue as a new intracellular CCR9 antagonist with improved affinity. To chemically induce CCR9 degradation, we then developed the first PROTAC targeting the IABS of GPCRs. In a proof-of-principle study, we succeeded in showing that our CCR9-PROTAC is able to reduce CCR9 levels, thereby offering an unprecedented approach to modulate GPCR activity.


Assuntos
Receptores CCR , Receptores Acoplados a Proteínas G , Sítio Alostérico , Ligantes , Receptores CCR/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...