Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Wildl Dis ; 53(2): 215-227, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28151078

RESUMO

We characterize Brucella infection in a wild southern sea otter ( Enhydra lutris nereis) with osteolytic lesions similar to those reported in other marine mammals and humans. This otter stranded twice along the central California coast, US over a 1-yr period and was handled extensively at two wildlife rehabilitation facilities, undergoing multiple surgeries and months of postsurgical care. Ultimately the otter was euthanized due to severe, progressive neurologic disease. Necropsy and postmortem radiographs revealed chronic, severe osteoarthritis spanning the proximal interphalangeal joint of the left hind fifth digit. Numerous coccobacilli within the joint were strongly positive on Brucella immunohistochemical labelling, and Brucella sp. was isolated in pure culture from this lesion. Sparse Brucella-immunopositive bacteria were also observed in the cytoplasm of a pulmonary vascular monocyte, and multifocal granulomas were observed in the spinal cord and liver on histopathology. Findings from biochemical characterization, 16S ribosomal DNA, and bp26 gene sequencing of the bacterial isolate were identical to those from marine-origin brucellae isolated from cetaceans and phocids. Although omp2a gene sequencing revealed 100% homology with marine Brucella spp. infecting pinnipeds, whales, and humans, omp2b gene sequences were identical only to pinniped-origin isolates. Multilocus sequence typing classified the sea otter isolate as ST26, a sequence type previously associated only with cetaceans. Our data suggest that the sea otter Brucella strain represents a novel marine lineage that is distinct from both Brucella pinnipedialis and Brucella ceti. Prior reports document the zoonotic potential of the marine brucellae. Isolation of Brucella sp. from a stranded sea otter highlights the importance of wearing personal protective equipment when handling sea otters and other marine mammals as part of wildlife conservation and rehabilitation efforts.


Assuntos
Brucella/patogenicidade , Lontras/microbiologia , Animais , Animais Selvagens , Brucella/isolamento & purificação , California , Caniformia
2.
Aquat Biosyst ; 10: 3, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24955238

RESUMO

BACKGROUND: OMEGA is an integrated aquatic system to produce biofuels, treat and recycle wastewater, capture CO2, and expand aquaculture production. This system includes floating photobioreactors (PBRs) that will cover hundreds of hectares in marine bays. To assess the interactions of marine mammals and birds with PBRs, 9 × 1.3 m flat panel and 9.5 × 0.2 m tubular PBRs were deployed in a harbor and monitored day and night from October 10, 2011 to Janurary 22, 2012 using infrared video. To observe interactions with pinnipeds, two trained sea lions (Zalophus californianus) and one trained harbor seal (Phoca vitulina richardii) were observed and directed to interact with PBRs in tanks. To determine the forces required to puncture PBR plastic and the effects of weathering, Instron measurements were made with a sea otter (Enhydra lutris) tooth and bird beaks. RESULTS: A total of 1,445 interactions of marine mammals and birds with PBRs were observed in the 2,424 hours of video recorded. The 95 marine mammal interactions, 94 by sea otters and one by a sea lion had average durations of three minutes (max 44 min) and represented about 1% of total recording time. The 1,350 bird interactions, primarily coots (Fulica americana) and gulls (Larus occidentalis and L. californicus) had average durations of six minutes (max. 170) and represented 5% of recording time. Interactive behaviors were characterized as passive (feeding, walking, resting, grooming, and social activity) or proactive (biting, pecking, investigating, and unspecified manipulating). Mammal interactions were predominantly proactive, whereas birds were passive. All interactions occurred primarily during the day. Ninety-six percent of otter interactions occurred in winter, whereas 73% of bird interactions in fall, correlating to their abundance in the harbor. Trained pinnipeds followed most commands to bite, drag, and haul-out onto PBRs, made no overt undirected interactions with the PBRs, but showed avoidance behavior to PBR tethers. Instron measurements indicated that sea-otter teeth and gull beaks can penetrate weathered plastic more easily than new plastic. CONCLUSIONS: Otter and bird interactions with experimental PBRs were benign. Large-scale OMEGA systems are predicted to have both positive and negative environmental consequences.

3.
PLoS One ; 5(9)2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20844747

RESUMO

"Super-blooms" of cyanobacteria that produce potent and environmentally persistent biotoxins (microcystins) are an emerging global health issue in freshwater habitats. Monitoring of the marine environment for secondary impacts has been minimal, although microcystin-contaminated freshwater is known to be entering marine ecosystems. Here we confirm deaths of marine mammals from microcystin intoxication and provide evidence implicating land-sea flow with trophic transfer through marine invertebrates as the most likely route of exposure. This hypothesis was evaluated through environmental detection of potential freshwater and marine microcystin sources, sea otter necropsy with biochemical analysis of tissues and evaluation of bioaccumulation of freshwater microcystins by marine invertebrates. Ocean discharge of freshwater microcystins was confirmed for three nutrient-impaired rivers flowing into the Monterey Bay National Marine Sanctuary, and microcystin concentrations up to 2,900 ppm (2.9 million ppb) were detected in a freshwater lake and downstream tributaries to within 1 km of the ocean. Deaths of 21 southern sea otters, a federally listed threatened species, were linked to microcystin intoxication. Finally, farmed and free-living marine clams, mussels and oysters of species that are often consumed by sea otters and humans exhibited significant biomagnification (to 107 times ambient water levels) and slow depuration of freshwater cyanotoxins, suggesting a potentially serious environmental and public health threat that extends from the lowest trophic levels of nutrient-impaired freshwater habitat to apex marine predators. Microcystin-poisoned sea otters were commonly recovered near river mouths and harbors and contaminated marine bivalves were implicated as the most likely source of this potent hepatotoxin for wild otters. This is the first report of deaths of marine mammals due to cyanotoxins and confirms the existence of a novel class of marine "harmful algal bloom" in the Pacific coastal environment; that of hepatotoxic shellfish poisoning (HSP), suggesting that animals and humans are at risk from microcystin poisoning when consuming shellfish harvested at the land-sea interface.


Assuntos
Toxinas Bacterianas/toxicidade , Proliferação Nociva de Algas , Microcistinas/toxicidade , Lontras/metabolismo , Poluentes da Água/toxicidade , Animais , Toxinas Bacterianas/análise , Toxinas Bacterianas/metabolismo , Cianobactérias/metabolismo , Monitoramento Ambiental , Água Doce/análise , Microcistinas/análise , Microcistinas/metabolismo , Lontras/anormalidades , Água do Mar/análise , Poluentes da Água/metabolismo
4.
Vet Parasitol ; 172(3-4): 183-94, 2010 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-20615616

RESUMO

During April 2004, 40 sick and dead southern sea otters (Enhydra lutris nereis) were recovered over 18km of coastline near Morro Bay, California. This event represented the single largest monthly spike in mortality ever recorded during 30 years of southern sea otter stranding data collection. Because of the point-source nature of the event and clinical signs consistent with severe, acute neurological disease, exposure to a chemical or marine toxin was initially considered. However, detailed postmortem examinations revealed lesions consistent with an infectious etiology, and further investigation confirmed the protozoan parasite Sarcocystis neurona as the underlying cause. Tissues from 94% of examined otters were PCR-positive for S. neurona, based on DNA amplification and sequencing at the ITS-1 locus, and 100% of tested animals (n=14) had elevated IgM and IgG titers to S. neurona. Evidence to support the point-source character of this event include the striking spatial and temporal clustering of cases and detection of high concentrations of anti-S. neurona IgM in serum of stranded animals. Concurrent exposure to the marine biotoxin domoic acid may have enhanced susceptibility of affected otters to S. neurona and exacerbated the neurological signs exhibited by stranded animals. Other factors that may have contributed to the severity of this epizootic include a large rainstorm that preceded the event and an abundance of razor clams near local beaches, attracting numerous otters close to shore within the affected area. This is the first report of a localized epizootic in marine wildlife caused by apicomplexan protozoa.


Assuntos
Organismos Aquáticos/parasitologia , Epidemias , Lontras/parasitologia , Sarcocystis , Sarcocistose/epidemiologia , Animais , Anticorpos Antiprotozoários/sangue , Bivalves/química , Encéfalo/parasitologia , California , DNA Espaçador Ribossômico/genética , Ácido Caínico/análogos & derivados , Ácido Caínico/análise , Músculo Esquelético/química , Músculo Esquelético/parasitologia , Fármacos Neuromusculares Despolarizantes/análise , Oceano Pacífico , Sarcocystis/genética , Sarcocistose/mortalidade , Sarcocistose/patologia
5.
Vet Parasitol ; 153(1-2): 12-8, 2008 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-18304737

RESUMO

In September 2004, a neonatal sea otter pup was found alive on the beach in northern Monterey Bay, CA. Efforts to locate the mother were unsuccessful. Due to a poor prognosis for successful rehabilitation, the pup was euthanized. Postmortem examination revealed emaciation, systemic lymphadenopathy and a malformation of the left cerebral temporal lobe. On histopathology, free tachyzoites and tissue cysts compatible with Toxoplasma gondii were observed in the brain, heart, thymus, liver, lymph nodes and peri-umbilical adipose. The presence of T. gondii within host tissues was associated with lymphoplasmacytic inflammation and tissue necrosis. Immunofluorescent antibody tests using postmortem serum were positive for anti-T. gondii IgM and IgG (at 1:320 and 1:1280 serum dilution, respectively), but were negative for IgG directed against Sarcocystis neurona and Neospora caninum (<1:40 each). Brain immunohistochemistry revealed positive staining for tachyzoites and tissue cysts using antiserum raised to T. gondii, but not S. neurona or N. caninum. T. gondii parasite DNA was obtained from extracts of brain and muscle by PCR amplification using the diagnostic B1 locus. Restriction enzyme digestion followed by gel electrophoresis and DNA sequencing confirmed the presence of Type X T. gondii, the strain identified in the majority of southern sea otter infections.


Assuntos
Transmissão Vertical de Doenças Infecciosas/veterinária , Lontras , Toxoplasmose Animal/transmissão , Animais , Animais Recém-Nascidos , Animais Selvagens , Encéfalo/parasitologia , Encéfalo/patologia , Feminino , Miocárdio/patologia , Gravidez , Toxoplasmose Animal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...