Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-30181736

RESUMO

BACKGROUND: Lipid metabolites play an important role in parasite differentiation and virulence. Studies have revealed that Leishmania sp. uses prostaglandins to evade innate barriers, thus enabling the parasites to survive inside immune cells. Despite the role of the enzyme Phospholipase A2 (PLA2) in prostaglandins production, few studies have investigated the role of parasite PLA2 during the interaction between L. (L.) amazonensis and the host (in vitro and in vivo) immune cells. METHODS: In the present work, the leishmanicidal effect of PLA2 inhibitors, methyl arachidonyl fluorophosphonate (MAFP), bromoenol lactone (BEL) and aristolochic acid (AA) were investigated in vitro (promastigote and intracellular amastigote forms of L. (L.) amazonensis) and during in vivo infection using BALB/c mice. RESULTS: The aforementioned inhibitors were deleterious to promastigote and amastigote forms of the L. (L.) amazonensis and were non-toxic to peritoneal macrophages from BALB/c mice. L. (L.) amazonensis-infected BALB/c mice treated with the inhibitor BEL presented decreased lesion size and skin parasitism; however, BEL treatment induced hepatotoxicity in BALB/c mice. CONCLUSIONS: Results presented herein suggested that PLA2 inhibitors altered L. (L.) amazonensis viability. In spite of liver toxicity, treatment with BEL was the most selective compound in vitro, as well in vivo, resulting in lower skin parasitism in the infected mice. These findings corroborate the role of PLA2 in parasite virulence and maintenance in vertebrate hosts, and suggest that molecules structurally related to BEL should be considered when planning compounds against Leishmania sp.

2.
J. venom. anim. toxins incl. trop. dis ; 24: 21, 2018. tab, graf, ilus
Artigo em Inglês | LILACS | ID: biblio-954855

RESUMO

Lipid metabolites play an important role in parasite differentiation and virulence. Studies have revealed that Leishmania sp. uses prostaglandins to evade innate barriers, thus enabling the parasites to survive inside immune cells. Despite the role of the enzyme Phospholipase A2 (PLA2) in prostaglandins production, few studies have investigated the role of parasite PLA2 during the interaction between L. (L.) amazonensis and the host (in vitro and in vivo) immune cells. Methods: In the present work, the leishmanicidal effect of PLA2 inhibitors, methyl arachidonyl fluorophosphonate (MAFP), bromoenol lactone (BEL) and aristolochic acid (AA) were investigated in vitro (promastigote and intracellular amastigote forms of L. (L.) amazonensis) and during in vivo infection using BALB/c mice. Results: The aforementioned inhibitors were deleterious to promastigote and amastigote forms of the L. (L.) amazonensis and were non-toxic to peritoneal macrophages from BALB/c mice. L. (L.) amazonensis-infected BALB/c mice treated with the inhibitor BEL presented decreased lesion size and skin parasitism; however, BEL treatment induced hepatotoxicity in BALB/c mice. Conclusions: Results presented herein suggested that PLA2 inhibitors altered L. (L.) amazonensis viability. In spite of liver toxicity, treatment with BEL was the most selective compound in vitro, as well in vivo, resulting in lower skin parasitism in the infected mice. These findings corroborate the role of PLA2 in parasite virulence and maintenance in vertebrate hosts, and suggest that molecules structurally related to BEL should be considered when planning compounds against Leishmania sp.(AU)


Assuntos
Animais , Masculino , Ratos , Inibidores de Fosfolipase A2/farmacologia , Leishmania/efeitos dos fármacos , Leishmania/parasitologia , Técnicas In Vitro , Macrófagos Peritoneais/efeitos dos fármacos , Lactonas/antagonistas & inibidores , Camundongos Endogâmicos BALB C
3.
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1484758

RESUMO

Background: Lipid metabolites play an important role in parasite differentiation and virulence. Studies have revealed that Leishmania sp. uses prostaglandins to evade innate barriers, thus enabling the parasites to survive inside immune cells. Despite the role of the enzyme Phospholipase A2 (PLA2) in prostaglandins production, few studies have investigated the role of parasite PLA2 during the interaction between L. (L.) amazonensis and the host (in vitro and in vivo) immune cells. Methods: In the present work, the leishmanicidal effect of PLA2 inhibitors, methyl arachidonyl fluorophosphonate (MAFP), bromoenol lactone (BEL) and aristolochic acid (AA) were investigated in vitro (promastigote and intracellular amastigote forms of L. (L.) amazonensis) and during in vivo infection using BALB/c mice. Results: The aforementioned inhibitors were deleterious to promastigote and amastigote forms of the L. (L.) amazonensis and were non-toxic to peritoneal macrophages from BALB/c mice. L. (L.) amazonensis-infected BALB/c mice treated with the inhibitor BEL presented decreased lesion size and skin parasitism; however, BEL treatment induced hepatotoxicity in BALB/c mice. Conclusions: Results presented herein suggested that PLA2 inhibitors altered L. (L.) amazonensis viability. In spite of liver toxicity, treatment with BEL was the most selective compound in vitro, as well in vivo, resulting in lower skin parasitism in the infected mice. These findings corroborate the role of PLA2 in parasite virulence and maintenance in vertebrate hosts, and suggest that molecules structurally related to BEL should be considered when planning compounds against Leishmania sp.


Assuntos
Animais , Camundongos Endogâmicos BALB C/imunologia , /uso terapêutico , Leishmania , Leishmaniose/tratamento farmacológico , Macrófagos
4.
Artigo em Inglês | MEDLINE | ID: mdl-22899963

RESUMO

Secretory phospholipases A(2) (sPLA(2)) exert proinflammatory actions through lipid mediators. These enzymes have been found to be elevated in many inflammatory disorders such as rheumatoid arthritis, sepsis, and atherosclerosis. The aim of this study was to evaluate the effect of harpalycin 2 (Har2), an isoflavone isolated from Harpalyce brasiliana Benth., in the enzymatic, edematogenic, and myotoxic activities of sPLA(2) from Bothrops pirajai, Crotalus durissus terrificus, Apis mellifera, and Naja naja venoms. Har2 inhibits all sPLA(2) tested. PrTX-III (B. pirajai venom) was inhibited at about 58.7%, Cdt F15 (C. d. terrificus venom) at 78.8%, Apis (from bee venom) at 87.7%, and Naja (N. naja venom) at 88.1%. Edema induced by exogenous sPLA(2) administration performed in mice paws showed significant inhibition by Har2 at the initial step. In addition, Har2 also inhibited the myotoxic activity of these sPLA(2)s. In order to understand how Har2 interacts with these enzymes, docking calculations were made, indicating that the residues His48 and Asp49 in the active site of these enzymes interacted powerfully with Har2 through hydrogen bonds. These data pointed to a possible anti-inflammatory activity of Har2 through sPLA(2) inhibition.

5.
Toxicon ; 47(1): 47-57, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16307769

RESUMO

A novel l-amino acid oxidase (LAO) (Casca LAO) from Crotalus durissus cascavella venom was purified to a high degree of molecular homogeneity using a combination of molecular exclusion and ion-exchange chromatography system. The purified monomer of LAO presented a molecular mass of 68 kDa and pI estimated in 5.43, which were determined by two-dimensional electrophoresis. The 71st N-terminal amino acid sequence of the LAO from Crotalus durissus cascavella presented a high amino acid sequence similarities with other LAOs from Colloselasma rhosostoma, Crotalus adamanteus, Agkistrodon h. blomhoffi, Agkistrodon h. halys and Trimeresurus stejnegeri. LAO displayed a Michaelis-Menten behavior with a kilometer of 46.7 microM and an optimum pH for enzymatic activity of 6.5. Casca LAO induced a dose-dependent platelet aggregation, which was abolished by catalase and inhibited by indomethacin and aspirin. These results suggest that the production of H2O2 is involved in subsequent activation of inflammatory enzymes, such as thromboxane. Casca LAO also inhibited the bacterial growth of Gram-negative (Xanthomonas axonopodis pv passiflorae) and Gram-positive (S. mutans) strains. Electron microscopy assessments of both bacterial strains suggest that the hydrogen peroxide produced by LAO induce bacterial membrane rupture and consequently loss of cytoplasmatic content. This LAO exhibited a high antileishmanic activity against the promastigote of Leishmania amazonensis in vitro, its activity was dependent on the production of hydrogen peroxide, and the 50% inhibitory concentration was estimated in 2.39 microg/ml.


Assuntos
Bactérias/efeitos dos fármacos , Venenos de Crotalídeos/enzimologia , L-Aminoácido Oxidase/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Antibacterianos/farmacologia , Relação Dose-Resposta a Droga , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , L-Aminoácido Oxidase/isolamento & purificação , Leishmaniose/tratamento farmacológico , Dados de Sequência Molecular , Inibidores da Agregação Plaquetária/farmacologia , Fatores de Tempo
6.
Protein J ; 24(3): 147-53, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16096720

RESUMO

A new Phospholipase A(2) (PLA(2)) from Micrurus dumerilii carinicauda venom was isolated and its primary structure determined. This new PLA(2) showed a low enzymatic activity when compared with other PLA(2)s and it is moderately basic with an isoelectric point of 8.0. Its amino acid sequence showed the presence of 120 amino acid residues and its sequence was: NLIQFLNMIQCTTPGREPLVAFANYGCYCGRGGSGTPVDELDRCCQVHDNCYDTAKKVFGCSPYFTMYSYDCSEGKLTCKDNNTKCKAAVCNCDRTAALCFAKAPYNDKNYKIDLTKRCQ. The structural model of MIDCA1, when compared with other strong neurotoxic PLA(2)s, such as Naja naja, showed significant differences in the beta-wing and neurotoxic sites, despite the high level of amino acid sequence similarity. These observations indicate a dissociation between the biological and catalytic activity of this new PLA(2), supporting the view that other regions of the protein are involved in the biological effects.


Assuntos
Sequência de Aminoácidos , Venenos Elapídicos/enzimologia , Fosfolipases A/genética , Animais , Elapidae , Modelos Moleculares , Dados de Sequência Molecular , Fosfolipases A/química , Fosfolipases A/isolamento & purificação , Estrutura Terciária de Proteína , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...