Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Jpn J Radiol ; 41(10): 1094-1103, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37071250

RESUMO

PURPOSE: To evaluate the diagnostic performance of deep learning using the Residual Networks 50 (ResNet50) neural network constructed from different segmentations for distinguishing malignant and benign non-mass enhancement (NME) on breast magnetic resonance imaging (MRI) and conduct a comparison with radiologists with various levels of experience. MATERIALS AND METHODS: A total of 84 consecutive patients with 86 lesions (51 malignant, 35 benign) presenting NME on breast MRI were analyzed. Three radiologists with different levels of experience evaluated all examinations, based on the Breast Imaging-Reporting and Data System (BI-RADS) lexicon and categorization. For the deep learning method, one expert radiologist performed lesion annotation manually using the early phase of dynamic contrast-enhanced (DCE) MRI. Two segmentation methods were applied: a precise segmentation was carefully set to include only the enhancing area, and a rough segmentation covered the whole enhancing region, including the intervenient non-enhancing area. ResNet50 was implemented using the DCE MRI input. The diagnostic performance of the radiologists' readings and deep learning were then compared using receiver operating curve analysis. RESULTS: The ResNet50 model from precise segmentation achieved diagnostic accuracy equivalent [area under the curve (AUC) = 0.91, 95% confidence interval (CI) 0.90, 0.93] to that of a highly experienced radiologist (AUC = 0.89, 95% CI 0.81, 0.96; p = 0.45). Even the model from rough segmentation showed diagnostic performance equivalent to a board-certified radiologist (AUC = 0.80, 95% CI 0.78, 0.82 vs. AUC = 0.79, 95% CI 0.70, 0.89, respectively). Both ResNet50 models from the precise and rough segmentation exceeded the diagnostic accuracy of a radiology resident (AUC = 0.64, 95% CI 0.52, 0.76). CONCLUSION: These findings suggest that the deep learning model from ResNet50 has the potential to ensure accuracy in the diagnosis of NME on breast MRI.


Assuntos
Neoplasias da Mama , Aprendizado Profundo , Humanos , Feminino , Mama/diagnóstico por imagem , Mama/patologia , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Radiologistas , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...