Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38675059

RESUMO

Due to the increasing demands for improved radiation safety and the growing concerns regarding the excessive use of plastics, this work aimed to develop effective and eco-friendly thermal-neutron-shielding materials based on recycled high-density polyethylene (r-HDPE) composites containing varying surface-treated gadolinium oxide (Gd2O3) contents (0, 5, 10, 15, and 20 wt%). The results indicate that the overall thermal-neutron-shielding properties of the r-HDPE composites were enhanced with the addition of Gd2O3, as evidenced by large reductions in I/I0, HVL, and TVL, as well as the substantial increases in ∑t and ∑t/ρ of the composites. Furthermore, the results reveal that the values for tensile properties initially increased up to 5-15 wt% of Gd2O3 and then gradually decreased at higher contents. In addition, the results show that the addition of Gd2O3 particles generally increased the density (ρ), the remaining ash at 600 °C, and the degree of crystallinity (%XC) of the composites. This work also determined the effects of gamma irradiation on relevant properties of the composites. The findings indicate that following gamma aging, the tensile modulus slightly increased, while the tensile strength, elongation at break, and hardness (Shore D) showed no significant (p < 0.05) differences, except for the sample containing 5 wt% of Gd2O3, which exhibited a noticeable reduction in elongation at break. Furthermore, by comparing the neutron-shielding and mechanical properties of the developed r-HDPE composites with common borated polyethylene (PE) containing 5 wt% and 15 wt% of boron, the results clearly indicate the superior shielding and tensile properties in the r-HDPE composites, implying the great potential of r-HDPE composites to replace virgin plastics as effective and more eco-friendly shielding materials.

2.
Polymers (Basel) ; 15(12)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37376362

RESUMO

Due to rapid increases in the utilization of radiation and nuclear technologies, effective and suitable radiation-shielding materials have become one of the most sought-after options to protect users and the public from excessive exposure to the radiation. However, most radiation-shielding materials have greatly reduced mechanical properties after the addition of fillers, resulting in their limited useability and shortened lifetime. Therefore, this work aimed to alleviate such drawbacks/limitations by exploring a possible method to simultaneously enhance both the X-ray shielding and mechanical properties of bismuth oxide (Bi2O3)/natural rubber (NR) composites through multi-layered structures, with varying (1-5) layers and a total combined thickness of 10 mm. To correctly determine the effects of the multi-layered structures on the properties of NR composites, the formulation and layer configuration for all multi-layered samples were tailored such that their theoretical X-ray shielding properties were equal to those of a single-layered sample that contained 200 phr Bi2O3. The results indicated that the multi-layered Bi2O3/NR composites with neat NR sheets on both outer layers (sample-D, sample-F, sample-H, and sample-I) had noticeably higher tensile strength and elongation at break than those of the other designs. Furthermore, all multi-layered samples (sample-B to sample-I), regardless of the layer structure, had enhanced X-ray shielding properties compared to those with a single layer (sample-A), as shown by their higher values of the linear attenuation coefficient (µ) and lead equivalence (Pbeq) and the lower value of the half-value layer (HVL) in the former. This work also determined the effects of thermal aging on relevant properties for all samples, with the results revealing that all the thermal-aged composites had higher values for the tensile modulus but lower values for the swelling percentage, tensile strength, and elongation at break, compared with the non-aged composites. Hence, based on the overall outcomes from this work, it could be concluded that the worrisome decreases in mechanical properties of the common single-layered NR composites after the addition of Bi2O3 could be prevented/reduced by introducing appropriate multi-layered structures, which would not only widen potential applications but also prolong the lifetime of the composites.

3.
J Environ Radioact ; 262: 107151, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36913797

RESUMO

Tritium, whether naturally occurring or caused by human nuclear activity, can result in a large amount of tritium contamination in the environment, especially in the water cycle, causing a high concentration of tritium in rainfall. The objective of this research was to measure the level of tritium in the environment from rainfall in two different areas as a basis for monitoring tritium contamination in the environment. Rainwater samples were collected in Thailand every 24 h for a period of 1 year during 2021-2022 at the Kasetsart University Station, Sriracha Campus, Chonburi province and at the Mae Hia Agricultural Meteorological Station, Chiang Mai province. The tritium levels were measured in rainwater samples using the electrolytic enrichment method combined with liquid scintillation counting. The chemical composition of the rainwater was analyzed based on ion chromatography. The results (presented with ± combined uncertainty) showed that the tritium content in the rainwater samples at Kasetsart University Station Sriracha Campus was in the range 0.9 ± 0.2-1.6 ± 0.3 TU (0.11 ± 0.02-0.19 ± 0.03 Bq.L-1). The mean concentration was 1.0 ± 0.2 TU (0.12 ± 0.03 Bq.L-1). The most common ions found in the rainwater samples were SO42-, Ca2+, and NO3-, with mean concentrations of 1.52 ± 0.82, 1.08 ± 0.51, and 1.05 ± 0.78 mg.L-1, respectively. The tritium content in rainwater collected from the Mae Hia Agricultural Meteorological Station was in the range 1.6 ± 0.2-4.9 ± 0.4 TU (0.19 ± 0.02-0.58 ± 0.05 Bq.L-1). The mean concentration was 2.4 ± 0.4 TU (0.28 ± 0.05 Bq.L-1). The most common ions found in the rainwater were NO3-, Ca2+, and SO42-, with mean concentrations of 1.21 ± 1.02, 0.67 ± 0.43, and 0.54 ± 0.41 mg.L-1, respectively. The tritium concentration in the rainwater at both stations differed but remained at a natural level (less than 10 TU). There was no correlation between the tritium concentration and the chemical composition of the rainwater. The tritium levels obtained from this study could be used as a basis for reference and monitoring of future environmental changes due to nuclear accidents or activities, both domestically and internationally.


Assuntos
Monitoramento de Radiação , Poluentes Radioativos da Água , Humanos , Trítio/análise , Tailândia , Chuva , Monitoramento Ambiental , Poluentes Radioativos da Água/análise
4.
Polymers (Basel) ; 13(19)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34641205

RESUMO

This work reports on the simulated neutron and self-emitted gamma attenuation of ultra-high-molecular-weight polyethylene (UHMWPE) composites containing varying Sm2O3 contents in the range 0-50 wt.%, using a simulation code, namely MCNP-PHITS. The neutron energy investigated was 0.025 eV (thermal neutrons), and the gamma energies were 0.334, 0.712, and 0.737 MeV. The results indicated that the abilities to attenuate thermal neutrons and gamma rays were noticeably enhanced with the addition of Sm2O3, as seen by the increases in µm and µ, and the decrease in HVL. By comparing the simulated neutron-shielding results from this work with those from a commercial 5%-borated PE, the recommended Sm2O3 content that attenuated thermal neutrons with equal efficiency to the commercial product was 11-13 wt.%. Furthermore, to practically improve surface compatibility between Sm2O3 and the UHMWPE matrix and, subsequently, the overall wear/mechanical properties of the composites, a silane coupling agent (KBE903) was used to treat the surfaces of Sm2O3 particles prior to the preparation of the Sm2O3/UHMWPE composites. The experimental results showed that the treatment of Sm2O3 particles with 5-10 pph KBE903 led to greater enhancements in the wear resistance and mechanical properties of the 25 wt.% Sm2O3/UHMWPE composites, evidenced by lower specific wear rates and lower coefficients of friction, as well as higher tensile strength, elongation at break, and surface hardness, compared to those without surface treatment and those treated with 20 pph KBE903. In conclusion, the overall results suggested that the addition of Sm2O3 in the UHMWPE composites enhanced abilities to attenuate not only thermal neutrons but also gamma rays emitted after the neutron absorption by Sm, while the silane surface treatment of Sm2O3, using KBE903, considerably improved the processability, wear resistance, and strength of the composites.

5.
Polymers (Basel) ; 13(6)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799832

RESUMO

This work aimed to theoretically determine the high-energy-photon-shielding properties of flexible wood/natural rubber (NR) and NR composites containing photon protective fillers, namely Pb, Bi2O3, or Bi2S3, using XCOM. The properties investigated were the mass attenuation coefficient (µm), linear attenuation coefficient (µ), and half value layer (HVL) of the composites, determined at varying photon energies of 0.001-5 MeV and varying filler contents of 0-1000 parts per hundred parts of rubber by weight (phr). The simulated results, which were in good agreement with previously reported experimental values (average difference was 5.3%), indicated that overall shielding properties increased with increasing filler contents but decreased with increasing incident photon energies. The results implied the potential of bismuth compounds, especially Bi2O3, to replace effective but highly toxic Pb as a safer high-energy-photon protective filler, evidenced by just a slight reduction in µm values compared with Pb fillers at the same filler content and photon energy. Furthermore, the results suggested that the addition of 20 phr wood particles, primarily aimed to enhance the rigidity and dimensional stability of Pb/NR, Bi2O3/NR, and Bi2S3/NR composites, did not greatly reduce shielding abilities; hence, they could be used as dimensional reinforcers for NR composites. Lastly, this work also reported the optimum Pb, Bi2O3, or Bi2S3 contents in NR and wood/NR composites at photon energies of 0.1, 0.5, 1, and 5 MeV, with 316-624 phr of filler being the recommended contents, of which the values depended on filler type and photon energy of interest.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...