Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 16: 124-135, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28111238

RESUMO

Respiratory syncytial virus (RSV) is one of the most prevalent causative agents of lower respiratory tract infections worldwide, especially in infants around 3 to 4months old. Infants at such a young age have maternally-transferred passive antibodies against RSV but do not have active immune systems efficient enough for the control of RSV infection. In order to elucidate age-specific profiles of immune responses against RSV protection, antibody responses were examined by using blood samples in both acute and convalescent phases obtained from child patients and adult patients. In addition to the serum neutralization activity, antibody responses to the RSV fusion protein (F protein) were dissected by analyzing levels of total IgG, IgG subclasses, the binding stability, and the levels of antibody for the neutralization epitopes. It was suggested that children's antibody responses against RSV are matured over months and years in at least 5 stages based on 1) levels of the neutralization titer and IgG3 for F protein in the convalescent phase, 2) geometric mean ratios of the neutralization titers and levels of IgG1 and IgG2 for F protein in the convalescent phase compared to those levels in the acute phase, 3) the affinity maturation of IgG for F protein and the cross reactivity of IgG for RSV glycoproteins of groups A and B, 4) levels of neutralization epitope-specific IgG, and 5) augmentation of overall antibody responses due to repetitive RSV infection.


Assuntos
Anticorpos Antivirais/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Proteínas Virais de Fusão/imunologia , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antivirais/sangue , Linhagem Celular Tumoral , Pré-Escolar , Ensaio de Imunoadsorção Enzimática , Feminino , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Infecções por Vírus Respiratório Sincicial/sangue , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/fisiologia
2.
J Dermatol Sci ; 82(1): 38-45, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26674124

RESUMO

BACKGROUND: It has been clinically demonstrated that intradermal (ID) vaccines have a potential to confer a superior immunogenic profile compared to intramuscular (IM) or subcutaneous (SC) vaccines. In terms of distribution of a vaccine antigen depending on the administration routes, at least two independent immunogenic pathways of the vaccines have been proposed: (1) the antigen recognition by the immune cells present at the vaccine-administered site and (2) the antigen recognition by the lymph node (LN)-resident immune cells through the lymphatic flow from the vaccine-administered site after the antigen is directly delivered into the draining LNs. OBJECTIVE: In order to clarify the key components for the immunogenic pathway of the ID vaccine, the correlation between the kinetics of the antigen distribution to the draining LNs and antibody responses to the antigen were evaluated. METHODS: We compared the antibody responses in the groups with by surgical removal of the administration site immediately after the ID administration, and by surgical removal of the draining LNs before the ID administration. RESULTS: The results suggested that the efficient and direct antigen delivery to the draining LNs plays an important role in the antibody responses to the ID vaccine. Indeed, it was confirmed that the direct administration into the draining LNs with the antigen elicited comparable levels of the antibody responses with the ID vaccine. At the cellular level, it was shown that the LN-resident immune cells such as B cells, dendritic cells, and macrophages including medullary macrophages and subcapsular sinus macrophages interacting with the antigens following the ID administration. Finally, we demonstrated by immunofluorescence analysis that the lymphatic vessels are more diffusely distributed in the dermis as compared with the subcutaneous area and muscle. CONCLUSION: The results of the present study suggested that the skin is an optimal tissue to facilitate the vaccine antigen access to the draining LNs, which is an important immunogenic pathway of the ID vaccine. Further elucidation of regulatory mechanisms underlying such an immunogenic pathway of the ID vaccine would provide us with elements for the development of novel adjuvants and devices to enhance the immunogenicity of the ID vaccines.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/administração & dosagem , Imunogenicidade da Vacina , Vacinas contra Influenza/administração & dosagem , Linfonodos/imunologia , Pele/imunologia , Vacinação , Animais , Anticorpos Antivirais/sangue , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vacinas contra Influenza/imunologia , Injeções Intradérmicas , Injeções Subcutâneas , Cinética , Linfonodos/metabolismo , Camundongos Endogâmicos BALB C , Pele/metabolismo
3.
Hum Vaccin Immunother ; 9(10): 2216-21, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23912600

RESUMO

Since the introduction of DNA vaccines two decades ago, this attractive strategy has been hampered by its low immunogenicity in humans. Studies conducted to improve the immunogenicity of DNA vaccines have shown that understanding the mechanism of action of DNA vaccines might be the key to successfully improving their immunogenicity. Our current understanding is that DNA vaccines induce innate and adaptive immune responses in two ways: (1) encoded protein (or polypeptide) antigen(s) by the DNA plasmid can be expressed in stromal cells (i.e., muscle cells) as well as DCs, where these antigens are processed and presented to naïve CD4 or CD8 T cells either by direct or cross presentation, respectively; and (2) the transfected DNA plasmid itself may bind to an un-identified cytosolic DNA sensor and activate the TBK1-STING pathway and the production of type I interferons (IFNs) which function as an adjuvant. Recent studies investigating double-stranded cytosolic DNA sensor(s) have highlighted new mechanisms in which cytosolic DNA may release secondary metabolites, which are in turn recognized by a novel DNA sensing machinery. Here, we discuss these new metabolites and the possibilities of translating this knowledge into improved immunogenicity for DNA vaccines.


Assuntos
Vacinas de DNA/imunologia , Imunidade Adaptativa , Adjuvantes Imunológicos/metabolismo , Animais , DNA/metabolismo , Humanos , Imunidade Inata , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/imunologia
4.
Vaccines (Basel) ; 1(3): 278-92, 2013 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-26344113

RESUMO

DNA vaccines can induce both humoral and cellular immune responses. Although some DNA vaccines are already licensed for infectious diseases in animals, they are not licensed for human use because the risk and benefit of DNA vaccines is still controversial. Indeed, in humans, the immunogenicity of DNA vaccines is lower than that of other traditional vaccines. To develop the use of DNA vaccines in the clinic, various approaches are in progress to enhance or improve the immunogenicity of DNA vaccines. Recent studies have shown that immunogenicity of DNA vaccines are regulated by innate immune responses via plasmid DNA recognition through the STING-TBK1 signaling cascade. Similarly, molecules that act as dsDNA sensors that activate innate immune responses through STING-TBK1 have been identified and used as genetic adjuvants to enhance DNA vaccine immunogenicity in mouse models. However, the mechanisms that induce innate immune responses by DNA vaccines are still unclear. In this review, we will discuss innate immune signaling upon DNA vaccination and genetic adjuvants of innate immune signaling molecules.

5.
Int J Mol Med ; 19(2): 309-15, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17203206

RESUMO

Gene therapy for congenital protein deficiencies requires lifelong expression of a deficient protein. Current gene therapy approaches preferentially employ the strong cytomegalovirus (CMV) promoter/enhancer or its derivative CAG promoter; however, these promoters provide only temporary transgene expression. To create a promoter that enables long-lasting expression in muscle, hybrid promoters were constructed by coupling the muscle creatine kinase (MCK) enhancer to various strong promoters for enhancement of tissue specificity and improved transcriptional activity. A hybrid promoter containing the MCK enhancer and the simian virus 40 promoter (MCK/SV40 promoter) yielded long-term (>6 months) expression of a human secretory alkaline phosphatase (huSEAP) reporter gene following electrotransfer of the plasmid into mice, whereas expression using a conventional CMV or CAG promoter faded away within a few weeks. To explore the mechanism behind the sustained expression obtained with the MCK/SV40 promoter, mice were immunized with a LacZ expression plasmid driven by MCK/SV40 or a conventional promoter. Minimal cellular and humoral responses to LacZ were observed in MCK/SV40 promoter-treated animals, and mouse SEAP gene expression in vivo was successfully maintained by both the MCK/SV40 and conventional promoters. These results suggest that the lower immunogenicity of the MCK/SV40 promoter contributed to long-lasting gene expression in mice. Therefore, the MCK/SV40 promoter may provide the basis for development of an effective transgene expression cassette for treatment of congenital protein deficiencies in which therapeutic proteins are recognized as foreign by the host immune system.


Assuntos
Creatina Quinase Forma MM/metabolismo , Expressão Gênica/genética , Regiões Promotoras Genéticas/genética , Vírus 40 dos Símios/genética , Transgenes/genética , Animais , Linhagem Celular , Creatina Quinase Forma MM/genética , Feminino , Humanos , Imunogenética , Camundongos , Camundongos Endogâmicos BALB C , Engenharia de Proteínas , Fatores de Tempo
6.
Vaccine ; 24(37-39): 6240-9, 2006 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-16806598

RESUMO

For efficacious vaccine development against Pseudomonas aeruginosa (P. aeruginosa), the immunogenicity of multivalent DNA vaccine was evaluated. Three different plasmids each targeting a fusion of outer membrane proteins (OprF/OprI), a protein regulating type III secretion system (PcrV), or an appendage (PilA) were prepared and mice were immunized with single (monovalent) or a combination of these plasmids (multivalent) via intramuscular electroporation (imEPT) or gene gun. Immunization with multivalent DNA vaccine via imEPT induced the most potent protection against lethal pneumonia. Although the serum levels of IgG binding to whole bacteria cells were comparable between groups, the strongest immune protection was associated with the serum levels of Th1-dominated multivalent IgG, the bronchoalveolar levels of macrophage inflammatory protein 2 (MIP-2) and IFN-gamma, and the number of neutrophils and macrophages in the bronchoalveolar lavage following intranasal challenge. These results implied the possible clinical application of multivalent DNA vaccine against P. aeruginosa.


Assuntos
Vacinas Bacterianas/imunologia , Pneumonia Bacteriana/prevenção & controle , Infecções por Pseudomonas/prevenção & controle , Pseudomonas aeruginosa/imunologia , Vacinas de DNA/imunologia , Animais , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Toxinas Bacterianas/genética , Toxinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/genética , Biolística/métodos , Lavagem Broncoalveolar/métodos , Quimiocina CXCL2 , Quimiocinas/imunologia , Eletroporação/métodos , Feminino , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/imunologia , Humanos , Imunoglobulina G/imunologia , Interferon gama , Camundongos , Camundongos Endogâmicos BALB C , Plasmídeos/genética , Pneumonia Bacteriana/imunologia , Proteínas Citotóxicas Formadoras de Poros , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Células Th1/imunologia , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética
7.
J Virol ; 80(13): 6218-24, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16775309

RESUMO

Toll-like receptors (TLRs) recognize microbial components and trigger the signaling cascade that activates the innate and adaptive immunity. TLR adaptor molecules play a central role in this cascade; thus, we hypothesized that overexpression of TLR adaptor molecules could mimic infection without any microbial components. Dual-promoter plasmids that carry an antigen and a TLR adaptor molecule such as the Toll-interleukin-1 receptor domain-containing adaptor-inducing beta interferon (TRIF) or myeloid differentiation factor 88 (MyD88) were constructed and administered to mice to determine if these molecules can act as an adjuvant. A DNA vaccine incorporated with the MyD88 genetic adjuvant enhanced antigen-specific humoral immune responses, whereas that with the TRIF genetic adjuvant enhanced cellular immune responses. Incorporating the TRIF genetic adjuvant in a DNA vaccine targeting the influenza HA antigen or the tumor-associated antigen E7 conferred superior protection. These results indicate that TLR adaptor molecules can bridge innate and adaptive immunity and potentiate the effects of DNA vaccines against virus infection and tumors.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Adaptadoras de Transporte Vesicular/imunologia , Adjuvantes Imunológicos , Vacinas Anticâncer/imunologia , Imunidade Inata , Vacinas contra Influenza/imunologia , Vacinas de DNA/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transporte Vesicular/genética , Adjuvantes Imunológicos/genética , Animais , Antígenos Virais/genética , Antígenos Virais/imunologia , Vacinas Anticâncer/genética , Feminino , Humanos , Imunidade Inata/genética , Imunização , Vacinas contra Influenza/genética , Influenza Humana/genética , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Fator 88 de Diferenciação Mieloide , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/terapia , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/imunologia , Plasmídeos/genética , Plasmídeos/imunologia , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/imunologia , Vacinas de DNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...