Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 12(11)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126434

RESUMO

Endfunctional polymers possess significant industrial and scientific importance. Sulfonyl endgroups, such as tosyl and nosyl endfunctionalities, due their ease of substitution are highly desired for a variety of polymer structures. The sulfonylation of hydroxyl-terminated polyisobutylene (PIB-OH), a chemically and thermally stable, biocompatible, fully saturated polymer, with tosyl chloride (TsCl) and nosyl chloride (NsCl) is presented in this study. PIB-OHs derived from commercial exo-olefin-ended PIB (PIBexo-OH) and allyl-terminated polymer made via quasiliving carbocationic polymerization of isobutylene (PIBall-OH) were tosylated and nosylated in the presence of 4-dimethylaminopyridine (DMAP), pyridine and 1-methylimidazole (1-MI) catalysts and triethylamine (TEA). Our systematic investigations revealed that the end product distribution strongly depends on the relative amount of the components, especially that of TEA. While PIBexo-OTs with quantitative endfunctionality is readily formed from PIBexo-OH, its nosylation is not as straightforward. During sulfonylation of PIBall-OH, the formed tosyl and nosyl endgroups are easily substituted with chloride ions, formed in the first step of sulfonylation, leading to chloride termini. We found that decreased amounts of TEA afford the synthesis of PIBall-OTs and PIBall-ONs with higher than 90% endfunctionalities. These sulfonyl-ended PIBs open new ways for utilizing PIB in various fields and in the synthesis of novel PIB-containing macromolecular architectures.

2.
Polymers (Basel) ; 12(10)2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33036354

RESUMO

Despite the great interest in nanoconfined materials nowadays, nanocompartmentalized poly(ionic liquid)s (PILs) have been rarely investigated so far. Herein, we report on the successful alkylation of poly(1-vinylimidazole) with methyl iodide in bicontinuous nanophasic poly(1-vinylimidazole)-l-poly(tetrahydrofuran) (PVIm-l-PTHF) amphiphilic conetworks (APCNs) to obtain nanoconfined methylated PVImMe-l-PTHF poly(ionic liquid) conetworks (PIL-CNs). A high extent of alkylation (~95%) was achieved via a simple alkylation process with MeI at room temperature. This does not destroy the bicontinuous nanophasic morphology as proved by SAXS and AFM, and PIL-CNs with 15-20 nm d-spacing and poly(3-methyl-1-vinylimidazolium iodide) PIL nanophases with average domain sizes of 8.2-8.4 nm are formed. Unexpectedly, while the swelling capacity of the PIL-CN dramatically increases in aprotic polar solvents, such as DMF, NMP, and DMSO, reaching higher than 1000% superabsorbent swelling degrees, the equilibrium swelling degrees decrease in even highly polar protic (hydrophilic) solvents, like water and methanol. An unprecedented Gaussian-type relationship was found between the ratios of the swelling degrees versus the polarity index, indicating increased swelling for the nanoconfined PVImMe-l-PTHF PIL-CNs in solvents with a polarity index between ~6 and 9.5. In addition to the nanoconfined structural features, the unique selective superabsorbent swelling behavior of the PIL-CNs can also be utilized in various application fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...