Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemMedChem ; : e202400330, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924475

RESUMO

The ability of synthetic peptides inhibitors of NOX1 to effectively block the production of ROS by the enzyme was studied with different methodologies. Specifically, taking advantage of our understanding of the active epitope of the regulatory NOX1 subunit NOXA1 as a potent inhibitor of NOX1-derived O2•- formation, a panel of peptidomimetic derivatives of this peptide were designed and synthesized with the aim of improving their activity and increasing their stability in plasma. The results highlighted that improved efficacy and potency was found for both the peptide-peptoid hybrid GS2, whereas stapled peptide AC5 and its precursor showed higher stability despite lower biological potency. This study showed that minimal structural modifications of NOXA1 peptides are required to improve both their potency and stability to finally achieve best candidates as new potential anti-thrombotic drugs.

2.
J Org Chem ; 89(7): 4932-4946, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38451837

RESUMO

The concise synthesis of a small library of fluorinated piperidines from readily available dihydropyridinone derivatives has been described. The effect of the fluorination on different positions has then been evaluated by chemoinformatic tools. In particular, the compounds' pKa's have been calculated, revealing that the fluorine atoms notably lowered their basicity, which is correlated to the affinity for hERG channels resulting in cardiac toxicity. The "lead-likeness" and three-dimensionality have also been evaluated to assess their ability as useful fragments for drug design. A random screening on a panel of representative proteolytic enzymes was then carried out and revealed that one scaffold is recognized by the catalytic pocket of 3CLPro (main protease of SARS-CoV-2 coronavirus).


Assuntos
Quimioinformática , Descoberta de Drogas , SARS-CoV-2 , Desenho de Fármacos , Inibidores de Proteases/farmacologia , Antivirais/farmacologia
3.
Org Biomol Chem ; 22(14): 2754-2763, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38488214

RESUMO

Convenient synthesis of stereochemically dense 5-oxo-pyrrolidines was obtained from succinic anyhdride and imines by combining the Castagnoli-Cushman reaction with directed Pd-catalyzed C(sp3)-H functionalization, taking advantage of the developing carboxylic group properly derivatized with 8-aminoquinoline as a directing group. These fully substituted 5-oxopyrrolidines were found to be able to inhibit BACE-1 enzyme with sub-micromolar activity, thanks to the interaction of the key aryl appendage introduced by C(sp3)-H activation within BACE-1 S2' subsite.

4.
ACS Med Chem Lett ; 15(2): 250-257, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38352832

RESUMO

We have applied a proteolysis targeting chimera (PROTAC) technology to obtain a peptidomimetic molecule able to trigger the degradation of SARS-CoV-2 3-chymotrypsin-like protease (3CLPro). The PROTAC molecule was designed by conjugating a GC-376 based dipeptidyl 3CLPro ligand to a pomalidomide moiety through a piperazine-piperidine linker. NMR and crystallographic data complemented with enzymatic and cellular studies showed that (i) the dipeptidyl moiety of PROTAC binds to the active site of the dimeric state of SARS-CoV-2 3CLPro forming a reversible covalent bond with the sulfur atom of catalytic Cys145, (ii) the linker and the pomalidomide cereblon-ligand of PROTAC protrude from the protein, displaying a high degree of flexibility and no interactions with other regions of the protein, and (iii) PROTAC reduces the protein levels of SARS-CoV-2 3CLPro in cultured cells. This study paves the way for the future applicability of peptidomimetic PROTACs to tackle 3CLPro-dependent viral infections.

5.
ACS Omega ; 9(7): 7719-7724, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38405463

RESUMO

In DNA-encoded library synthesis, amine-substituted building blocks are prevalent. We explored isocyanide multicomponent reactions to diversify DNA-tagged amines and reported the Ugi-azide reaction with high yields and a good substrate scope. In addition, the Ugi-aza-Wittig reaction and the Ugi-4-center-3-component reaction, which used bifunctional carboxylic acids to provide lactams, were explored. Five-, six-, and seven-membered lactams were synthesized from solid support-coupled DNA-tagged amines and bifunctional building blocks, providing access to structurally diverse scaffolds.

6.
J Chem Inf Model ; 63(20): 6302-6315, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37788340

RESUMO

Receptor-selective peptides are widely used as smart carriers for specific tumor-targeted delivery. A remarkable example is the cyclic nonapeptide iRGD (CRGDKPGDC, 1) that couples intrinsic cytotoxic effects with striking tumor-homing properties. These peculiar features are based on a rather complex multistep mechanism of action, where the primary event is the recognition of RGD integrins. Despite the high number of preclinical studies and the recent success of a phase I trial for the treatment of pancreatic ductal adenocarcinoma (PDAC), there is little information available about the iRGD three-dimensional (3D) structure and integrin binding properties. Here, we re-evaluate the peptide's affinity for cancer-related integrins including not only the previously known targets αvß3 and αvß5 but also the αvß6 isoform, which is known to drive cell growth, migration, and invasion in many malignancies including PDAC. Furthermore, we use parallel tempering in the well-tempered ensemble (PT-WTE) metadynamics simulations to characterize the in-solution conformation of iRGD and extensive molecular dynamics calculations to fully investigate its binding mechanism to integrin partners. Finally, we provide clues for fine-tuning the peptide's potency and selectivity profile, which, in turn, may further improve its tumor-homing properties.


Assuntos
Integrinas , Oligopeptídeos , Linhagem Celular Tumoral , Oligopeptídeos/química , Peptídeos/química , Neoplasias Pancreáticas
7.
ACS Sens ; 8(10): 3693-3700, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37758234

RESUMO

Alzheimer's disease (AD) is a debilitating neurological condition characterized by cognitive decline, memory loss, and behavioral skill impairment, features that worsen with time. Early diagnosis will likely be the most effective therapy for Alzheimer's disease since it can ensure timely pharmacological treatments that can reduce the irreversible progression and delay the symptoms. Amyloid ß-peptide 1-42 (Aß (1-42)) is considered one of the key pathological AD biomarkers that is present in different biological fluids. However, Aß (1-42) detection still relies on colorimetric and enzyme-linked immunoassays as the gold standard characterized by low accuracy or high costs, respectively. In this context, optical detection techniques based on surface-enhanced Raman spectroscopy (SERS) through advanced nanoconstructs are promising alternatives for the development of novel rapid and low-cost methods for the targeting of Aß pathological biomarkers in fluids. Here, a multilayered nanoprobe constituted by bioorthogonal Raman reporters (RRs) embedded within two layers of gold nanoparticles (Au@RRs@AuNPs) has been developed and successfully validated for specific detection of Aß (1-42) in the human cerebrospinal fluid (CSF) with sensitivity down to pg/mL. The smart double-layer configuration enables us to exploit the outer gold NP surfaces for selective absorption of targeted peptide whose concentration controls the aggregation behavior of Au@RRs@AuNPs, proportionally reflected in Raman intensity changes, providing high specificity and sensitivity and representing a significant step ahead of the state of the art on SERS for clinical analyses.


Assuntos
Doença de Alzheimer , Nanopartículas Metálicas , Humanos , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/líquido cefalorraquidiano , Ouro , Nanopartículas Metálicas/química , Biomarcadores
8.
Eur J Med Chem ; 249: 115118, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36682293

RESUMO

The design and synthesis of a series of peptide derivatives based on a short ACE2 α-helix 1 epitope and subsequent [i - i+4] stapling of the secondary structure resulted in the identification of a 9-mer peptide capable to compete with recombinant ACE2 towards Spike RBD in the micromolar range. Specifically, SARS-CoV-2 Spike inhibitor screening based on colorimetric ELISA assay and structural studies by circular dichroism showed the ring-closing metathesis cyclization being capable to stabilize the helical structure of the 9-mer 34HEAEDLFYQ42 epitope better than the triazole stapling via click chemistry. MD simulations showed the stapled peptide being able not only to bind the Spike RBD, sterically interfering with ACE2, but also showing higher affinity to the target as compared to parent epitope.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Enzima de Conversão de Angiotensina 2 , SARS-CoV-2 , Epitopos , Peptídeos/farmacologia , Ligação Proteica
9.
J Org Chem ; 87(18): 12041-12051, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36039955

RESUMO

The development of molecules able to target protein-protein interactions (PPIs) is of interest for the development of novel therapeutic agents. Since a high percentage of PPIs are mediated by α-helical structure at the interacting surface, peptidomimetics that reproduce the essential conformational components of helices are useful templates for the development of PPIs inhibitors. In this work, the synthesis of a constrained dipeptide isostere and insertion in the short peptide epitope EDLFYQ of the angiotensin-converting enzyme 2 (ACE2) α1 helix domain resulted in the identification of a molecule capable of inhibiting the SARS-CoV-2 ACE2/spike interaction in the micromolar range. Moreover, inhibition of SARS-CoV-2 3CLPro main protease activity was assessed as an additional inhibitory property of the synthesized peptidomimetics, taking advantage of the C-terminal Q amino acid present in both the ACE2 epitope and the Mpro recognizing motif (APSTVxLQ), thus paving the way to the development of multitarget therapeutics toward coronavirus infections.


Assuntos
COVID-19 , Peptidomiméticos , Aminoácidos , Enzima de Conversão de Angiotensina 2 , Dipeptídeos , Epitopos , Humanos , Peptídeos/metabolismo , Peptídeos/farmacologia , Peptidomiméticos/farmacologia , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
10.
Int J Mol Sci ; 23(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35628383

RESUMO

Surface-enhanced Raman spectroscopy (SERS) exploiting Raman reporter-labeled nanoparticles (RR@NPs) represents a powerful tool for the improvement of optical bio-assays due to RRs' narrow peaks, SERS high sensitivity, and potential for multiplexing. In the present work, starting from low-cost and highly available raw materials such as cysteamine and substituted benzoic acids, novel bioorthogonal RRs, characterized by strong signal (103 counts with FWHM < 15 cm−1) in the biological Raman-silent region (>2000 cm−1), RRs are synthesized by implementing a versatile, modular, and straightforward method with high yields and requiring three steps lasting 18 h, thus overcoming the limitations of current reported procedures. The resulting RRs' chemical structure has SH-pendant groups exploited for covalent conjugation to high anisotropic gold-NPs. RR@NPs constructs work as SERS nanoprobes demonstrating high colloidal stability while retaining NPs' physical and vibrational properties, with a limit of detection down to 60 pM. RR@NPs constructs expose carboxylic moieties for further self-assembling of biomolecules (such as antibodies), conferring tagging capabilities to the SERS nanoprobes even in heterogeneous samples, as demonstrated with in vitro experiments by transmembrane proteins tagging in cell cultures. Finally, thanks to their non-overlapping spectra, we envision and preliminary prove the possibility of exploiting RR@NPs constructs simultaneously, aiming at improving current SERS-based multiplexing bioassays.


Assuntos
Nanopartículas , Análise Espectral Raman , Anticorpos/química , Ouro/química , Nanopartículas/química , Análise Espectral Raman/métodos
11.
Bioorg Chem ; 126: 105873, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35598570

RESUMO

Effective targeting of αvß3 integrin is of high relevance in cancer research as this protein is overexpressed on several types of tumor cells, making such receptor ideal for the development of therapeutics and of diagnostic imaging agents. In this paper, the synthesis of a novel functionalized triazole-based RGD peptidomimetic and its covalent conjugation on pegylated gold nanostars is reported. These highly stable nanoconstructs showed a multivalent effect in binding αvß3 integrin receptors and proved to inhibit M21 cell adhesion at 25 pM concentration. Thanks to their peculiar surface plasmon resonance in the "NIR transparent window", targeted gold nanostars may represent a promising agent for anticancer multi-modality treatments. 2009 Elsevier Ltd. All rights reserved.


Assuntos
Peptidomiméticos , Adesão Celular , Linhagem Celular Tumoral , Ouro , Integrina alfaVbeta3/metabolismo , Integrina beta3 , Oligopeptídeos/farmacologia , Peptidomiméticos/farmacologia
12.
Bioorg Med Chem ; 63: 116746, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35430537

RESUMO

Asparagine endopeptidase (AEP), also called legumain, is a pH-dependent endolysosomal cysteine protease that cleaves its substrates after asparagine residues. Recent studies showed that it possesses δ-secretase activity and that it is implicated in numerous neurological diseases such as Alzheimer's disease (AD). Following evidence of aryl-morpholines as useful asparagine endopeptidase inhibitors, a series of morpholinoanilines with diverse substituents at ortho position were synthesized in view of improving the potency and scope of this molecular scaffold, allowing to identify ethyl 2-isonipecotate-4-morpholinoaniline possessing inhibition potency in the nanomolar range. CNS MPO (CNS MultiParameter Optimization) calculations revealed that most of the compounds developed in this work show physicochemical parameters in the desirable range for CNS drug candidates.


Assuntos
Doença de Alzheimer , Cisteína Endopeptidases , Doença de Alzheimer/tratamento farmacológico , Fármacos do Sistema Nervoso Central/uso terapêutico , Cisteína Endopeptidases/química , Humanos , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico
13.
Molecules ; 27(4)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35209039

RESUMO

During tumor angiogenesis different growth factors, cytokines and other molecules interact closely with each other to facilitate tumor cell invasion and metastatic diffusion. The most intensively studied as molecular targets in anti-angiogenic therapies are vascular endothelial growth factor (VEGF) and related receptors, integrin receptors and matrix metalloproteinases (MMPs). Considering the poor efficacy of cancer angiogenesis monotherapies, we reasoned combining the inhibition of αvß3 and MMP2 as a multitarget approach to deliver a synergistic blockade of tumor cell migration, invasion and metastasis. Accordingly, we identified a common pharmacophore in the binding cavity of MMP2 and αvß3, demonstrating such approach with the design, synthesis and bioassays of tyrosine-derived peptidomimetics carrying the necessary functional groups to bind to key pharmacophoric elements of MMP2 and αvß3 RGD integrin.


Assuntos
Inibidores da Angiogênese , Antineoplásicos , Integrina alfaVbeta3/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias , Neovascularização Patológica , Inibidores da Angiogênese/síntese química , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Neoplasias/irrigação sanguínea , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo
14.
Bioorg Med Chem ; 41: 116218, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34030087

RESUMO

DNA-encoded libraries (DEL) represent a powerful technology for generating compound collections for drug discovery campaigns, that have allowed for the selection of many hit compounds over last three decades. However, the application of split-and-pool combinatorial methodologies, as well as the limitation imposed by DNA-compatible chemistry, has often brought to a limited exploration of the chemical space, with an over-representation of flat aromatic or peptide-like structures, whereas a higher scaffold complexity is generally associated with a more successful biological activity of the library. In this context, the application of Diversity-Oriented Synthesis, capable of creating sp3-rich molecular entities even starting from simple flat building blocks, can represent an efficient strategy to significantly broaden the chemical space explored by DELs. In this review, we present selected examples of DNA-compatible complexity-generating reactions that can be applied for the generation of DNA-encoded DOS libraries, including: (i) multicomponent reactions; (ii) C-H/C-X functionalization; (iii) tandem approaches; (iv) cycloadditions; (v) reactions introducing privileged elements. Also, selected case studies on the generation of DELs with high scaffold diversity are discussed, reporting their application in drug discovery programs.


Assuntos
Técnicas de Química Combinatória , DNA/química , Descoberta de Drogas/métodos , Bibliotecas de Moléculas Pequenas , Biblioteca Gênica
15.
Nanomaterials (Basel) ; 11(3)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800443

RESUMO

Gold nanoparticles (AuNPs) show physicochemical and optical functionalities that are of great interest for spectroscopy-based detection techniques, and especially for surface enhanced Raman spectroscopy (SERS), which is capable of providing detailed information on the molecular content of analysed samples. Moreover, the introduction of different moieties combines the interesting plasmonic properties of the AuNPs with the specific and selective recognition capabilities of the antibodies (Ab) towards antigens. The conjugation of biomolecules to gold nanoparticles (AuNPs) has received considerable attention for analysis of liquid samples and in particular biological fluids (biofluids) in clinical diagnostic and therapeutic field. To date, gold nanostars (AuNSts) are gaining more and more attention as optimal enhancers for SERS signals due to the presence of sharp branches protruding from the core, providing a huge number of "hot spots". To this end, we focused our attention on the design, optimization, and deep characterization of a bottom up-process for (i) AuNPs increasing stabilization in high ionic strength buffer, (ii) covalent conjugation with antibodies, while (iii) retaining the biofunctionality to specific tag analyte within the biofluids. In this work, a SERS-based substrate was developed for the recognition of a short fragment (HA) of the hemagglutinin protein, which is the major viral antigen inducing a neutralizing antibody response. The activity and specific targeting with high selectivity of the Ab-AuNPs was successfully tested in transfected neuroblastoma cells cultures. Then, SERS capabilities were assessed measuring Raman spectra of HA solution, thus opening interesting perspective for the development of novel versatile highly sensitive biofluids sensors.

16.
Eur J Med Chem ; 214: 113260, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33581552

RESUMO

A series of d-proline peptidomimetics were evaluated as dual inhibitors of both human carbonic anhydrases (hCAs) and human gelatinases (MMP2 and MMP9), as these enzymes are both involved in the carcinogenesis and tumor invasion processes. The synthesis and enzyme inhibition kinetics of d-proline derivatives containing a biphenyl sulfonamido moiety revealed an interesting inhibition profile of compound XIV towards MMP9 and CAII. The SAR analysis and docking studies revealed a stringent requirement of a trans geometry for the two arylsulfonyl moieties, which are both necessary for inhibition of MMP9 and CAII. As MMP9 and CAII enzymes are both overexpressed in gastrointestinal stromal tumor cells, this molecule may represent an interesting chemical probe for a multitargeting approach on gastric and colorectal cancer.


Assuntos
Anidrase Carbônica II/antagonistas & inibidores , Inibidores da Anidrase Carbônica/farmacologia , Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Peptidomiméticos/farmacologia , Prolina/farmacologia , Anidrase Carbônica II/metabolismo , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Relação Dose-Resposta a Droga , Humanos , Inibidores de Metaloproteinases de Matriz/síntese química , Inibidores de Metaloproteinases de Matriz/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Peptidomiméticos/síntese química , Peptidomiméticos/química , Prolina/síntese química , Prolina/química , Relação Estrutura-Atividade
17.
Expert Opin Ther Pat ; 31(6): 509-523, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33487088

RESUMO

Introduction: Matrix MetalloProteinases (MMPs) are key enzymes in several pathophysiological processes connected to the extracellular matrix (ECM) degradation. Earlier clinical trials evaluating broad spectrum MMP inhibitors as cancer therapeutics failed to succeed, resulting in toxic side effects, such as musculoskeletal pain and inflammation, due to poor selectivity. As it is now recognized that some MMPs are essential for tumor progression and metastasis, but others play host-protective functions, selective MMP inhibitors are needed, and their interest has grown also for therapeutic applications beyond cancer, such as infectious, inflammatory and neurological diseases. Areas covered: This updated review describes patents concerning MMP inhibitors published within January 2014 and June 2020, with therapeutic applications spanning from cancer to inflammatory and neurological disorders. Expert opinion: Although the number of patents has decreased with respect to the previous decade, new applications provide selective matrix metalloproteinase inhibitors for therapeutic treatments beyond cancer. For several applications, the need of selective inhibitors resulted in the development of new non-hydroxamate compounds, paving the way towards a renewed interest towards MMPs as therapeutic targets. In particular, inhibitors able to cross the blood-brain barrier have been disclosed and proposed for the treatment of neurological conditions, infections, wound healing and cancer.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Metaloproteinases de Matriz/farmacologia , Neoplasias/tratamento farmacológico , Animais , Barreira Hematoencefálica/metabolismo , Desenho de Fármacos , Desenvolvimento de Medicamentos , Humanos , Inibidores de Metaloproteinases de Matriz/efeitos adversos , Inibidores de Metaloproteinases de Matriz/farmacocinética , Neoplasias/enzimologia , Patentes como Assunto , Distribuição Tecidual
18.
ACS Chem Neurosci ; 12(3): 378-390, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33459557

RESUMO

Developing drugs for the central nervous system (CNS) requires fine chemical modifications, as a strict balance between size and lipophilicity is necessary to improve the permeability through the blood-brain barrier (BBB). In this context, morpholine and its analogues represent valuable heterocycles, due to their conformational and physicochemical properties. In fact, the presence of a weak basic nitrogen atom and of an oxygen atom at the opposite position provides a peculiar pKa value and a flexible conformation to the ring, thus allowing it to take part in several lipophilic-hydrophilic interactions, and to improve blood solubility and brain permeability of the overall structure. In CNS-active compounds, morpholines are used (1) to enhance the potency through molecular interactions, (2) to act as a scaffold directing the appendages in the correct position, and (3) to modulate pharmacokinetic/pharmacodynamic (PK/PD) properties. In this perspective, selected morpholine-containing CNS drug candidates are discussed to reveal the active pharmacophores accountable for the (1) modulation of receptors involved in mood disorders and pain, (2) bioactivity toward enzymes and receptors responsible for neurodegenerative diseases, and (3) inhibition of enzymes involved in the pathology of CNS tumors. The medicinal chemistry/pharmacological activity of morpholine derivatives is discussed, in the effort to highlight the importance of morpholine ring interactions in the active site of different targets, particularly reporting binding features retrieved from PDB data, when available.


Assuntos
Barreira Hematoencefálica , Fármacos do Sistema Nervoso Central , Sistema Nervoso Central , Fármacos do Sistema Nervoso Central/farmacologia , Morfolinas/farmacologia
19.
Bioorg Med Chem Lett ; 30(20): 127467, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32768649

RESUMO

Despite a high degree of structural similarity, it is known that MMP2 and MMP9 have distinct roles in the angiogenic switch and in cell migration, as they activate diverse signaling pathways. Indeed, inhibition of MMP2 and MMP9 can show beneficial or detrimental effects depending on the stage of tumor progression. Thus, the selective inhibition of gelatinases is of relevance for a successful drug lead, which has to be achieved despite the high structural similarity of the two gelatinases. Herein, the synthesis and evaluation of d-proline-derived hydroxamic acids containing amino appendages at C-4 as gelatinase inhibitors are reported. Inhibition assays enabled the identification of a > 200-fold selective MMP9 inhibitor when Lys was considered as a C-4 substituent, thus addressing gelatinase selectivity beyond the S1' subsite, which is a major driver for selectivity. Molecular docking studies revealed the basic moiety of Lys as detrimental for inhibition of MMP2 as compared to MMP9.


Assuntos
Descoberta de Drogas , Gelatinases/antagonistas & inibidores , Inibidores de Metaloproteinases de Matriz/farmacologia , Peptidomiméticos/farmacologia , Relação Dose-Resposta a Droga , Gelatinases/metabolismo , Humanos , Inibidores de Metaloproteinases de Matriz/síntese química , Inibidores de Metaloproteinases de Matriz/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Peptidomiméticos/síntese química , Peptidomiméticos/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...