Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Biol Chem ; 273(21): 12981-7, 1998 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-9582332

RESUMO

Cytoplasmic Na+ and Ca2+ regulate the activity of Na+-Ca2+ exchange proteins, in addition to serving as the transported ions, and protein regions involved in these processes have been identified for the canine cardiac Na+-Ca2+ exchanger, NCX1.1. Although protein regions associated with Na+i- and Ca2+i-dependent regulation are highly conserved among cloned Na+-Ca2+ exchangers, it is unknown whether or not the structure-function relationships characteristic of NCX1.1 apply to any other exchangers. Therefore, we studied structure-function relationships in a Na+-Ca2+ exchanger from Drosophila, CALX1.1, which is unique among characterized members of this family of proteins in that microM levels of Ca2+i inhibit exchange current. Wild-type and mutant CALX1.1 exchangers were expressed in Xenopus oocytes and characterized electrophysiologically using the giant excised patch technique. Mutations within the putative regulatory Ca2+i binding site of CALX1. 1, like corresponding alterations in NCX1.1, led to reduced ability (i.e. D516V and D550I) or inability (i.e. G555P) of Ca2+i to inhibit Na+-Ca2+ exchange activity. Similarly, mutations within the putative XIP region of CALX1.1, as in NCX1.1, led to two distinct phenotypes: acceleration (i.e. K306Q) and elimination (i.e. Delta310-313) of Na+i-dependent inactivation. These results indicate that the respective regulatory roles of the Ca2+i binding site and XIP region are conserved between CALX1.1 and NCX1.1, despite opposite responses to Ca2+i. We extended these findings using chimeric constructs of CALX1.1 and NCX1.1 to determine whether or not functional interconversion of Ca2+i regulatory phenotypes was feasible. With one chimera (i.e. CALX:NCX:CALX), substitution of a 193-amino acid segment, from the large intracellular loop of NCX1.1, for the corresponding 177-amino acid segment of CALX1.1 led to an exchanger that was stimulated by Ca2+i. This result indicates that the regulatory Ca2+i binding site of NCX1.1 retains function in a CALX1. 1 parent transporter and that the substituted segment contains some of the amino acid sequence(s) required for transduction of the Ca2+i binding signal.


Assuntos
Drosophila/química , Trocador de Sódio e Cálcio/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cálcio/metabolismo , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Homologia de Sequência de Aminoácidos , Sódio/metabolismo , Trocador de Sódio e Cálcio/genética , Trocador de Sódio e Cálcio/metabolismo , Relação Estrutura-Atividade
3.
J Gen Physiol ; 109(3): 361-9, 1997 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-9089442

RESUMO

Cardiac muscle fails to relax upon replacement of extracellular Ca2+ with Ba2+. Among the manifold consequences of this intervention, one major possibility is that Na(+)-Ba2+ exchange is inadequate to support normal relaxation. This could occur due to reduced transport rates of Na(+)-Ba2+ exchange and/or by failure of Ba2+ to activate the exchanger molecule at the high affinity regulatory Ca2+ binding site. In this study, we examined transport and regulatory properties for Na(+)-Ca2+ and Na(+)-Ba2+ exchange. Inward and outward Na(+)-Ca2+ or Na(+)-Ba2+ exchange currents were examined at 30 degrees C in giant membrane patches excised from Xenopus oocytes expressing the cloned cardiac Na(+)-Ca2+ exchanger, NCX1. When excised patches were exposed to either cytoplasmic Ca2+ or Ba2+, robust inward Na(+)-Ca2+ exchange currents were observed, whereas Na(+)-Ba2+ currents were absent or barely detectable. Similarly, outward currents were greatly reduced when pipette solutions contained Ba2+ rather than Ca2+. However, when solution temperature was elevated from 30 degrees C to 37 degrees C, a substantial increase in outward Na(+)-Ba2+ exchange currents was observed, but not so for inward currents. We also compared the relative abilities of Ca2+ and Ba2+ to activate outward Na(+)-Ca2+ exchange currents at the high affinity regulatory Ca2+ binding site. While Ba2+ was capable of activating the exchanger, it did so with a much lower affinity (KD approximately 10 microM) compared with Ca2+ (KD approximately 0.3 microM). Moreover, the efficiency of Ba2+ regulation of Na(+)-Ca2+ exchange is also diminished relative to Ca2+, supporting approximately 60% of maximal currents obtainable with Ca2+. Ba2+ is also much less effective at alleviating Na+i-induced inactivation of NCX1. These results indicate that the reduced ability of NCX1 to adequately exchange Na+ and Ba2+ contributes to failure of the relaxation process in the cardiac muscle.


Assuntos
Bário/farmacologia , Cálcio/farmacologia , Proteínas de Transporte/metabolismo , Miocárdio/metabolismo , Animais , Bário/metabolismo , Cálcio/metabolismo , Cães , Regulação para Baixo/fisiologia , Eletrofisiologia , Técnicas In Vitro , Potenciais da Membrana/fisiologia , Contração Miocárdica/efeitos dos fármacos , Miocárdio/citologia , Oócitos/metabolismo , Técnicas de Patch-Clamp , Proteínas Recombinantes/metabolismo , Trocador de Sódio e Cálcio , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...