Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sci Total Environ ; 755(Pt 2): 142539, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33045601

RESUMO

For climate models that use paleo-environment data to predict future climate change, tree-ring isotope variations are one important archive for the reconstruction of paleo-hydrological conditions. Due to the rather complicated pathway of water, starting from precipitation until its uptake by trees and the final incorporation of its components into tree-ring cellulose, a closer inspection of seasonal variations of tree water uptake is important. In this study, branch and needle samples of two pine species (Pinus pinaster and Pinus nigra subsp. laricio) and several water compartments (precipitation, creek, soil) were sampled over a two-year period and analyzed for the temporal variations of their oxygen and hydrogen stable isotope ratios (δ18O and δ2H) at five sites over an elevation gradient from sea level to around 1600 m a.s.l. on the Mediterranean island of Corsica (France). A new model was established to disentangle temporal relationships of source water uptake of trees. It uses a calculation method that incorporates the two processes mostly expected to affect source water composition: mixing of waters and evaporation. The model results showed that the temporal offset from precipitation to water uptake is not constant and varies with elevation and season. Overall, seasonal source water origin was shown to be dominated by precipitation from autumn and spring. While autumn precipitation was a more important water source for trees growing at mid- (~800-1000 m a.s.l) and high-elevation (~1600 m a.s.l.) sites, trees at coastal sites mostly took up water from late winter and spring. These findings show that predicted decreases in precipitation amounts during the wet season in the Mediterranean can have strong impacts on water availability for pine trees, especially at higher elevations.


Assuntos
Pinus , França , Isótopos de Oxigênio , Estações do Ano , Árvores , Água
2.
Sci Rep ; 6: 24367, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27073126

RESUMO

The Tibetan Plateau (TP) is a globally important "water tower" that provides water for nearly 40% of the world's population. This supply function is claimed to be threatened by pasture degradation on the TP and the associated loss of water regulation functions. However, neither potential large scale degradation changes nor their drivers are known. Here, we analyse trends in a high-resolution dataset of grassland cover to determine the interactions among vegetation dynamics, climate change and human impacts on the TP. The results reveal that vegetation changes have regionally different triggers: While the vegetation cover has increased since the year 2000 in the north-eastern part of the TP due to an increase in precipitation, it has declined in the central and western parts of the TP due to rising air temperature and declining precipitation. Increasing livestock numbers as a result of land use changes exacerbated the negative trends but were not their exclusive driver. Thus, we conclude that climate variability instead of overgrazing has been the primary cause for large scale vegetation cover changes on the TP since the new millennium. Since areas of positive and negative changes are almost equal in extent, pasture degradation is not generally proceeding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...