Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 12: 707859, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421599

RESUMO

Synaptic alterations concomitant with neuroinflammation have been described in patients and experimental models of autism spectrum disorder (ASD). However, the role of microglia and astroglia in relation to synaptic changes is poorly understood. Male Wistar rats prenatally exposed to valproic acid (VPA, 450 mg/kg, i.p.) or saline (control) at embryonic day 10.5 were used to study synapses, microglia, and astroglia in the prefrontal cortex (PFC) at postnatal days 3 and 35 (PND3 and PND35). Primary cultures of cortical neurons, microglia, and astroglia isolated from control and VPA animals were used to study each cell type individually, neuron-microglia and microglia-astroglia crosstalk. In the PFC of VPA rats, synaptic changes characterized by an increase in the number of excitatory synapses were evidenced at PND3 and persisted until PND35. At PND3, microglia and astroglia from VPA animals were morphologically similar to those of age-matched controls, whereas at PND35, reactive microgliosis and astrogliosis were observed in the PFC of VPA animals. Cortical neurons isolated from VPA rats mimicked in vitro the synaptic pattern seen in vivo. Cortical microglia and astroglia isolated from VPA animals exhibited reactive morphology, increased pro-inflammatory cytokines, and a compromised miRNA processing machinery. Microglia from VPA animals also showed resistance to a phagocytic challenge. In the presence of neurons from VPA animals, microglia isolated from VPA rats revealed a non-reactive morphology and promoted neurite outgrowth, while microglia from control animals displayed a reactive profile and promoted dendritic retraction. In microglia-astroglia co-cultures, microglia from VPA animals displayed a reactive profile and exacerbated astrocyte reactivity. Our study indicates that cortical microglia from VPA animals are insensitive or adapted to neuronal cues expressed by neurons from VPA animals. Further, long-term in vivo microgliosis could be the result of altered microglia-astroglia crosstalk in VPA animals. Thus, our study highlights cortical microglia-astroglia communication as a new mechanism implicated in neuroinflammation in ASD; consequently, we propose that this crosstalk is a potential target for interventions in this disorder.

2.
J Neurochem ; 159(1): 128-144, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34081798

RESUMO

Atypical connectivity between brain regions and altered structure of the corpus callosum (CC) in imaging studies supports the long-distance hypoconnectivity hypothesis proposed for autism spectrum disorder (ASD). The aim of this study was to unveil the CC ultrastructural and cellular changes employing the valproic acid (VPA) rat model of ASD. Male Wistar rats were exposed to VPA (450 mg/kg i.p.) or saline (control) during gestation (embryonic day 10.5), and maturation, exploration, and social behavior were subsequently tested. Myelin content, ultrastructure, and oligodendroglial lineage were studied in the CC at post-natal days 15 (infant) and 36 (juvenile). As a functional outcome, brain metabolic activity was determined by positron emission tomography. Concomitantly with behavioral deficits in juvenile VPA rats, the CC showed reduced myelin basic protein, conserved total number of axons, reduced percentage of myelinated axons, and aberrant and less compact arrangements of myelin sheath ultrastructure. Mature oligodendrocytes decreased and oligodendrocyte precursors increased in the absence of astrogliosis or microgliosis. In medial prefrontal and somatosensory cortices of juvenile VPA rats, myelin ultrastructure and oligodendroglial lineage were preserved. VPA animals exhibited global brain hypometabolism and local hypermetabolism in brain regions relevant for ASD. In turn, the CC of infant VPA rats showed reduced myelin content but preserved oligodendroglial lineage. Our findings indicate that CC hypomyelination is established during infancy and prior to oligodendroglial pattern alterations, which suggests that axon-oligodendroglia communication could be compromised in VPA animals. Thus, CC hypomyelination may underlie white matter alterations and contribute to atypical patterns of connectivity and metabolism found in ASD.


Assuntos
Transtorno do Espectro Autista/metabolismo , Corpo Caloso/metabolismo , Rede Nervosa/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Comportamento Social , Ácido Valproico/toxicidade , Animais , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Corpo Caloso/efeitos dos fármacos , Corpo Caloso/patologia , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Feminino , Masculino , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/patologia , Ratos , Ratos Wistar , Tomografia Computadorizada de Emissão de Fóton Único/métodos
3.
Mol Autism ; 12(1): 23, 2021 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-33676530

RESUMO

BACKGROUND: Autism spectrum disorders (ASD) are synaptopathies characterized by area-specific synaptic alterations and neuroinflammation. Structural and adhesive features of hippocampal synapses have been described in the valproic acid (VPA) model. However, neuronal and microglial contribution to hippocampal synaptic pattern and its time-course of appearance is still unknown. METHODS: Male pups born from pregnant rats injected at embryonic day 10.5 with VPA (450 mg/kg, i.p.) or saline (control) were used. Maturation, exploratory activity and social interaction were assessed as autistic-like traits. Synaptic, cell adhesion and microglial markers were evaluated in the CA3 hippocampal region at postnatal day (PND) 3 and 35. Primary cultures of hippocampal neurons from control and VPA animals were used to study synaptic features and glutamate-induced structural remodeling. Basal and stimuli-mediated reactivity was assessed on microglia primary cultures isolated from control and VPA animals. RESULTS: At PND3, before VPA behavioral deficits were evident, synaptophysin immunoreactivity and the balance between the neuronal cell adhesion molecule (NCAM) and its polysialylated form (PSA-NCAM) were preserved in the hippocampus of VPA animals along with the absence of microgliosis. At PND35, concomitantly with the establishment of behavioral deficits, the hippocampus of VPA rats showed fewer excitatory synapses and increased NCAM/PSA-NCAM balance without microgliosis. Hippocampal neurons from VPA animals in culture exhibited a preserved synaptic puncta number at the beginning of the synaptogenic period in vitro but showed fewer excitatory synapses as well as increased NCAM/PSA-NCAM balance and resistance to glutamate-induced structural synaptic remodeling after active synaptogenesis. Microglial cells isolated from VPA animals and cultured in the absence of neurons showed similar basal and stimuli-induced reactivity to the control group. Results indicate that in the absence of glia, hippocampal neurons from VPA animals mirrored the in vivo synaptic pattern and suggest that while neurons are primed during the prenatal period, hippocampal microglia are not intrinsically altered. CONCLUSIONS: Our study suggests microglial role is not determinant for developing neuronal alterations or counteracting neuronal outcome in the hippocampus and highlights the crucial role of hippocampal neurons and structural plasticity in the establishment of the synaptic alterations in the VPA rat model.


Assuntos
Anticonvulsivantes , Transtorno do Espectro Autista/induzido quimicamente , Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Ácido Valproico , Animais , Transtorno do Espectro Autista/metabolismo , Comportamento Animal/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Feminino , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Masculino , Microglia/efeitos dos fármacos , Moléculas de Adesão de Célula Nervosa/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/ultraestrutura , Fosfoproteínas Fosfatases/metabolismo , Gravidez , Ratos Wistar
4.
Front Aging Neurosci ; 11: 123, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31214013

RESUMO

Astroglial cells are crucial for central nervous system (CNS) homeostasis. They undergo complex morpho-functional changes during aging and in response to hormonal milieu. Ovarian hormones positively affect different astroglia parameters, including regulation of cell morphology and release of neurotrophic and neuroprotective factors. Thus, ovarian hormone loss during menopause has profound impact in astroglial pathophysilogy and has been widely associated to the process of brain aging. Humanin (HN) is a secreted mitochondrial-encoded peptide with neuroprotective effects. It is localized in several tissues with high metabolic rate and its expression decreases with age. In the brain, humanin has been found in glial cells in physiological conditions. We previously reported that surgical menopause induces hippocampal mitochondrial dysfunction that mimics an aging phenotype. However, the effect of ovarian hormone deprivation on humanin expression in this area has not been studied. Also, whether astrocytes express and release humanin and the regulation of such processes by ovarian hormones remain elusive. Although humanin has also proven to be beneficial in ameliorating cognitive impairment induced by different insults, its putative actions on structural synaptic plasticity have not been fully addressed. In a model of surgical menopause in rats, we studied hippocampal humanin expression and localization by real-time quantitative polymerase chain reaction (RT-qPCR) and double immunohistochemistry, respectively. Humanin production and release and ovarian hormone regulation of such processes were studied in cultured astrocytes by flow cytometry and ELISA, respectively. Humanin effects on glutamate-induced structural synaptic alterations were determined in primary cultures of hippocampal neurons by immunocytochemistry. Humanin expression was lower in the hippocampus of ovariectomized rats and its immunoreactivity colocalized with astroglial markers. Chronic ovariectomy also promoted the presence of less complex astrocytes in this area. Ovarian hormones increased humanin intracellular content and release by cultured astrocytes. Humanin prevented glutamate-induced dendritic atrophy and reduction in puncta number and total puncta area for pre-synaptic marker synaptophysin in cultured hippocampal neurons. In conclusion, astroglial functional and morphological alterations induced by chronic ovariectomy resemble an aging phenotype and could affect astroglial support to neuronal function by altering synaptic connectivity and functionality. Reduced astroglial-derived humanin may represent an underlying mechanism for synaptic dysfunction and cognitive decline after menopause.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...