Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Infect Dis ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38943594

RESUMO

The envelope protein of dengue virus (DENV) is a primary target of the humoral immune response. The domain III of the DENV envelope protein (EDIII) is known to be the target of multiple potently neutralizing antibodies. One such antibody is 3H5, a mouse antibody that binds strongly to EDIII and potently neutralizes DENV serotype 2 (DENV-2) with unusually minimal antibody-dependent enhancement (ADE). To selectively display the binding epitope of 3H5, we strategically modified DENV-2 EDIII by shielding other known epitopes with engineered N-glycosylation sites. The modifications resulted in a glycosylated EDIII antigen termed "EDIII mutant N". This antigen was successfully used to sift through a dengue-immune scFv-phage library to select for scFv antibodies that bind to or closely surround the 3H5 epitope. The selected scFv antibodies were expressed as full-length human antibodies and showed potent neutralization activity to DENV-2 with low or negligible ADE resembling 3H5. These findings not only demonstrate the capability of the N-glycosylated EDIII mutant N as a tool to drive an epitope-directed antibody selection campaign but also highlight its potential as a dengue immunogen. This glycosylated antigen shows promise in focusing the antibody response toward a potently neutralizing epitope while reducing the risk of antibody-dependent enhancement.

2.
PLoS One ; 17(5): e0266136, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35617160

RESUMO

Non-structural protein 1 (NS1) is a glycoprotein component of dengue virus (DENV) that is essential for viral replication, infection and immune evasion. Immunization with NS1 has been shown to elicit antibody-mediated immune responses which protect mice against DENV infections. Here, we obtained peripheral blood mononuclear cells from human subjects with secondary dengue infections, which were used to construct a dengue immune phage library displaying single-chain variable fragments. Phage selective for DENV NS1 were obtained by biopanning. Twenty-one monoclonal antibodies (mAbs) against DENV NS1 were generated from the selected phage and characterized in detail. We found most anti-NS1 mAbs used IGHV1 heavy chain antibody genes. The mAbs were classified into strongly and weakly-reactive groups based on their binding to NS1 expressed in dengue virus 2 (DENV2)-infected cells. Antibody binding experiments with recombinant NS1 proteins revealed that the mAbs recognize conformational epitopes on the ß-ladder domain (amino acid residues 178-273) of DENV NS1. Epitope mapping studies on alanine-substituted NS1 proteins identified distinct but overlapping epitopes. Protruding amino acids distributed around the spaghetti loop are required for the binding of the strongly-reactive mAbs, whereas the recognition residues of the weakly-reactive mAbs are likely to be located in inaccessible sites facing toward the cell membrane. This information could guide the design of an NS1 epitope-based vaccine that targets cross-reactive conserved epitopes on cell surface-associated DENV NS1.


Assuntos
Vírus da Dengue , Dengue , Animais , Anticorpos Monoclonais , Anticorpos Antivirais , Reações Cruzadas , Vírus da Dengue/genética , Epitopos , Humanos , Leucócitos Mononucleares/metabolismo , Camundongos , Proteínas Recombinantes , Proteínas não Estruturais Virais/genética
3.
Phytochemistry ; 156: 33-42, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30172077

RESUMO

The deficiency of α-galactosidase activity in coconut endosperm has been reported to cause a disability to hydrolyze oligogalactomannan in endosperm resulting in curd coconut phenotype. However, neither the α-galactosidase encoding gene in coconut nor the mutation type has been identified and characterized in normal and curd coconuts. In this study, cDNA and genomic DNA encoding α-galactosidase gene alleles from a normal and two curd coconuts were successfully cloned and characterized. The deduced amino acid of wild type α-galactosidase contains 398 amino acid residues with a 17 N-terminal amino acids signal peptide sequence. Three mutant alleles, the first 19-amino acids from 67 to 85 (ADALVSTGLARLGYQYVNL) deletion with S137R and the second R216T, were identified from curd coconut plant no.1 while the third P250R was identified from curd coconut plant no. 10. All mutations of α-galactosidase gene were confirmed by the analysis of parental genomic DNA from normal and curd coconuts. Heterologous expression in Komagataella phaffii (Pichia pastoris) indicated that recombinant P250R, R216T and 19-amino acids deletion-S137R mutant proteins showed no α-galactosidase activity. Only the recombinant wild-type protein was able to detect for α-galactosidase activity. These results are in accordance with the no detection of α-galactosidase activity in developing curd coconut endosperms by tissue staining. While, the accumulation of enzyme activity was present in the solid endosperm of normal coconut. The full-length cDNA and parental genomic DNA sequences encoding α-galactosidase in normal coconut as well as identified curd coconut mutant alleles are reported in Genbank accession no. KJ957156 and KM001681-3. Transcription level of the α-galactosidase gene in mature curd coconut endosperm was at least 20 times higher than normal. In conclusion, absence of α-galactosidase activity caused by gene mutations associates with an accumulation of oligogalactomannan in endosperms, resulting in curd coconut phenotype.


Assuntos
Cocos/metabolismo , Endosperma/metabolismo , Mananas/metabolismo , Mutação , alfa-Galactosidase/genética , alfa-Galactosidase/metabolismo , Sequência de Aminoácidos , Cocos/enzimologia , Cocos/genética , Endosperma/enzimologia , Endosperma/genética , Galactose/análogos & derivados , Alinhamento de Sequência
4.
Plant Sci ; 272: 107-116, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29807581

RESUMO

Molecular chaperones or heat shock proteins are a large protein family with important functions in every cellular organism. Among all types of the heat shock proteins, information on the ER-localized HSP90 protein (HSP90B) and its encoding gene is relatively scarce in the literature, especially in photosynthetic organisms. In this study, expression profiles as well as promoter sequence of the HSP90B gene were investigated in the model green alga Chlamydomonas reinhardtii. We have found that HSP90B is strongly induced by heat and ER stresses, while other short-term exposure to abiotic stresses, such as salinity, dark-to-light transition or light stress does not appear to affect the expression. Promoter truncation analysis as well as chromatin immunoprecipitation using the antibodies recognizing histone H3 and acetylated histone H3, revealed a putative core constitutive promoter sequence between -1 to -253 bp from the transcription start site. Our results also suggested that the nucleotides upstream of the core promoter may contain repressive elements such as putative repressor binding site(s).


Assuntos
Chlamydomonas reinhardtii/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Regiões Promotoras Genéticas/genética , Chlamydomonas reinhardtii/genética , Imunoprecipitação da Cromatina , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP90/genética , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...