Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 586(7831): 708-713, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33116285

RESUMO

Titanium silicalite-1 (TS-1) is a zeolitic material with MFI framework structure, in which 1 to 2 per cent of the silicon atoms are substituted for titanium atoms. It is widely used in industry owing to its ability to catalytically epoxidize olefins with hydrogen peroxide (H2O2), leaving only water as a byproduct1,2; around one million tonnes of propylene oxide are produced each year using this process3. The catalytic properties of TS-1 are generally attributed to the presence of isolated Ti(IV) sites within the zeolite framework1. However, despite almost 40 years of experimental and computational investigation4-10, the structure of these active Ti(IV) sites is unconfirmed, owing to the challenges of fully characterizing TS-1. Here, using a combination of spectroscopy and microscopy, we characterize in detail a series of highly active and selective TS-1 propylene epoxidation catalysts with well dispersed titanium atoms. We find that, on contact with H217O2, all samples exhibit a characteristic solid-state 17O nuclear magnetic resonance signature that is indicative of the formation of bridging peroxo species on dinuclear titanium sites. Further, density functional theory calculations indicate that cooperativity between two titanium atoms enables propylene epoxidation via a low-energy reaction pathway with a key oxygen-transfer transition state similar to that of olefin epoxidation by peracids. We therefore propose that dinuclear titanium sites, rather than isolated titanium atoms in the framework, explain the high efficiency of TS-1 in propylene epoxidation with H2O2. This revised view of the active-site structure may enable further optimization of TS-1 and the industrial epoxidation process.

2.
Angew Chem Int Ed Engl ; 56(23): 6449-6453, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28429408

RESUMO

We report on the first thoroughly characterized molybdenum borate, which was synthesized in a high-pressure/high-temperature experiment at 12.3 GPa/1300 °C using a Walker-type multianvil apparatus. Mo2 B4 O9 incorporates tetrahedral molybdenum clusters into an anionic borate crystal structure-a structural motif that has never been observed before in the wide field of borate crystal chemistry. The six bonding molecular orbitals of the [Mo4 ] tetrahedron are completely filled with 12 electrons, which are fully delocalized over the four molybdenum atoms. This finding is in agreement with the results of the magnetic measurements, which confirmed the diamagnetic character of Mo2 B4 O9 . The two four-coordinated boron sites can be differentiated in the 11 B MAS-NMR spectrum because of the strongly different degrees of local distortions. Experimentally obtained IR and Raman bands were assigned to vibrational modes based on DFT calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...