Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 112(4): 1491-1497, 1996 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12226460

RESUMO

Previous work (D.P. Delmer, J. Pear, A. Andrawis, D. Stalker [1995] Mol Gen Genet 248: 43-51) has identified a gene in cotton (Gossypium hirsutum), Rac13, that encodes a small, signal-transducing GTPase and shows high expression in the fiber at the time of transition from primary to secondary wall synthesis. Since Rac13 may be important in signal transduction pathway(s), regulating the onset of fiber secondary wall synthesis, we continue to characterize Rac13 by determining its ability to undergo posttranslational modification. In animals Rac proteins contain the C-terminal consensus sequence CaaL (where "a" can be any aliphatic residue), which is a site for geranylgeranylation (B.T. Kinsella, R.A. Erdman, W.A. Maltese [1994] J Biol Chem 266: 9786-9794). We have identified activities in developing cotton fibers that resemble in specificity the geranylgeranyl- and farnesyltransferases of animals and yeast. In addition, using prenyltransferases from rabbit reticulocytes, we show that Rac13, having a C-terminal sequence of CAFL, can serve as an in vitro substrate for geranylgeranylation but not farnesylation. However, the presence of the uncommon penultimate F residue appears to slow the rate of prenylation considerably compared with other acceptors.

2.
Plant Physiol ; 100(1): 120-30, 1992 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16652933

RESUMO

Our previous work (E. Shedletzky, M. Shmuel, D.P. Delmer, D.T.A. Lamport [1990] Plant Physiol 94:980-987) showed that suspension-cultured tomato cells adapted to growth on the cellulose synthesis inhibitor 2,6-dichlorobenzonitrile (DCB) have a markedly altered cell wall composition, most notably a markedly reduced level of the cellulose-xyloglucan network. This study compares the adaptation to DCB of two cell lines from dicots (tomato [Lycopersicon esculentum] and tobacco [Nicotiana tabacum]) and a Graminaceous monocot (barley [Hordeum bulbosum] endosperm). The difference in wall structures between the dicots and the monocot is reflected in the very different types of wall modifications induced by growth on DCB. The dicots, having reduced levels of cellulose and xyloglucan, possess walls the major integrity of which is provided by Ca(2+)-bridged pectates because protoplasts can be prepared from these cells simply by treatment with divalent cation chelator and a purified endopolygalacturonase. The tensile strength of these walls is considerably less than walls from nonadapted cells, but wall porosity is not altered. In contrast, walls from adapted barley cells contain very little pectic material and normal to elevated levels of noncellulosic polysaccharides compared with walls from nonadapted cells. Surprisingly, they have tensile strengths higher than their nonadapted counterpart, although cellulose levels are reduced by 70%. Evidence is presented that these walls obtain their additional strength by an altered pattern of cross-linking of polymers involving phenolic components. Such cross-linking may also explain the observation that the porosity of these walls is also considerably reduced. Cells of adapted lines of both the dicots and barley are resistant to plasmolysis, suggesting that they possess very strong connections between the wall and the plasma membrane.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA