Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(5): e27574, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38486762

RESUMO

Polydiacetylenes (PDAs), conjugated and stimuli-responsive polymers, are of interest for colorimetric sensing technologies. Commercially available PDAs with carboxylic headgroup do not show any colorimetric response to acid. To achieve acid-responsive property, the headgroups of PDAs are often modified with some functional moieties, involving complicated synthetic processes. This contribution presents a facile approach to develop acid-responsive materials via co-assembly of PDA and excess sodium hydroxide (NaOH). After low-temperature incubation and photopolymerization, the mixtures of 10,12-tricosadiynoic acid (TCDA) and NaOH develop into red-phase poly (TCDA-Na+) assemblies. A unique red-to-blue color transition occurs when the poly (TCDA-Na+) assemblies are exposed to hydrogen chloride (HCl) acid both in aqueous solution and gas phase. Increasing the concentrations of NaOH and TCDA monomer during the self-assembly process affects the molecular organization and morphologies of the resultant poly (TCDA-Na+) assemblies, which in turn govern the sensitivity to acid. The results of this study offer a simple and inexpensive method for developing acid-responsive PDAs, extending their colorimetric sensing applications.

2.
RSC Adv ; 7(66): 41435-41443, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29276583

RESUMO

Recognition of nucleic acids remains an important endeavor in biology. Nucleic acids adopt shapes ranging from A-form (RNA and GC rich DNA) to B-form (AT rich DNA). We show, in this contribution, shape-specific recognition of A-U rich RNA duplex by a neomycin (Neo)-polydiacetylene (PDA) complex. PDA assemblies are fabricated by using a well-known diacetylene (DA) monomer, 10,12-pentacosadiynoic acid (PCDA). The response of poly(PCDA) assemblies is generated by mixing with a modified neomycin-PCDA monomer (Neo-PCDA). The functionalization by neomycin moiety provides specific binding with homopolyribonucleotide poly (rA) - poly (rU) stimulus. Various types of alcohols are utilized as additives to enhance the sensitivity of poly(PCDA)/Neo-PCDA assemblies. A change of absorption spectra is clearly observed when a relatively low concentration of poly (rA)-poly (rU) is added into the system. Furthermore, poly(PCDA)/Neo-PCDA shows a clear specificity for poly (rA)-poly (rU) over the corresponding DNA duplex. The variation of linker between neomycin moiety and conjugated PDA backbone is found to significantly affect its sensitivity. We also investigate other parameters including the concentration of Neo-PCDA and the DA monomer structure. Our results provide here preliminary data for an alternative approach to improve the sensitivity of PDA utilized in biosensing and diagnostic applications.

3.
J Colloid Interface Sci ; 439: 105-11, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25463181

RESUMO

An ability to control the thermochromic behaviors of polydiacetylene (PDA)-based materials is very important for their utilization. Recently, our group has developed the PDA/zinc oxide (ZnO) nanocomposites, which exhibit reversible thermochromism (Traiphol et al., 2011). In this study, we present our continuation work demonstrating a rather simple method for fine tuning their color-transition temperature. The PDA/ZnO nanocomposites are prepared by varying photopolymerization time, which in turn affects the length of PDA conjugated backbone. We have found that the increase of photopolymerization time from 1 to 120min results in systematically decrease of the color-transition temperature from about 85 to 40°C. These PDA/ZnO nanocomposites still exhibit reversible thermochromism. The PDA/ZnO nanocomposites embedded in polyvinyl alcohol films show two-step color-transition processes, the reversible blue to purple and then irreversible purple to orange. Interestingly, the increase of photopolymerization time causes an increase of the irreversible color-transition temperature. Our method is quite simple and cheap, which can provide a library of PDA-based materials with controllable color-transition temperature.

4.
J Colloid Interface Sci ; 432: 176-81, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25086392

RESUMO

In this contribution, we report a systematic study of polydiacetylene (PDA) vesicles fabricated by mixing two types of monomers, 10,12-tricosadiynoic acid (TCDA) and 10,12-pentacosadiynoic acid (PCDA). These diacetylene (DA) monomers constitute the same head group but different alkyl chain length, which in turn causes structural mismatch within the PDA layers. The PCDA:TCDA ratios are 100, 75, 50, 25 and 0mol%. Morphologies and properties of these PDA vesicles are explored by utilizing laser light scattering, transmission electron microscopy, differential scanning calorimetry, temperature-dependent nuclear magnetic resonance spectroscopy (NMR) and spin-lattice relaxation time (T1) measurements. An increase in DA mole ratio to 50mol% leads to significant increase in particle size. The mixed PDA vesicles also exhibit irregular shape with rather rough surface. The mismatch of alkyl side chain causes the drop of phase transition temperature. For the system of mixed poly(PCDA50:TCDA50), its transition temperature is lower than those of the pure PDAs. The NMR line shape analysis detects an abrupt change of proton signal adjacent to the PDA head group during the blue/red color-transition process. The T1 measurements also reveal different local environments of PDA alkyl side chains in the blue and red phases. The mismatch of PDA side chains causes significant drop of the color-transition temperature.

5.
J Colloid Interface Sci ; 418: 43-51, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24461816

RESUMO

This contribution presents our continuation work on the color-transition behaviors of polydiacetylene(PDA)/ZnO nanocomposites prepared by using three types of monomers, 5,7-hexadecadiynoic acid (HDDA), 10,12-tricosadiynoic acid (TCDA) and 10,12-pentacosadiynoic acid (PCDA). The color-transition behaviors of these nanocomposites upon exposure to acid and base are investigated by utilizing UV/vis absorption spectroscopy. We have found that these PDA/ZnO nanocomposites exhibit colorimetric response at both low and high pH regions. The addition of acid causes the poly(HDDA)/ZnO, poly(TCDA)/ZnO and poly(PCDA)/ZnO nanocomposites to change color from blue to red at pH~5, 3.5 and 2, respectively. The color of pure PDA vesicles, on the other hand, is hardly affected at this pH range. At high pH region, the pure poly(TCDA) vesicles change color at pH~8 while it requires much higher pH to induce color transition of the PDA/ZnO nanocomposites. The mechanism responsible for color transition of the PDA/ZnO nanocomposites is explored by various techniques including infrared spectroscopy, zeta potential analyzer and light scattering. Our result provides a new approach for controlling the colorimetric response to pH of PDA-based materials.

6.
J Colloid Interface Sci ; 403: 58-66, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23683960

RESUMO

This study explores roles of initial solvent on the formation of conjugated polymer nanoparticles (CPNs) and their photophysical properties. Stable aqueous CPN dispersion of poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylvinylene)(MEH-PPV) and regioregular poly(3-octylthiophene)(rr-P3OT) are prepared via reprecipitation technique. This preparation method involves the injection of polymer solution in organic solvents into an excess amount of water. We demonstrate that water solubility of the initial solvent is a major factor dictating mechanism of the CPN formation. Dichloromethane (DCM) and tetrahydrofuran (THF), possessing very different water solubilities, are used as initial solvents in this work. The resultant CPNs exhibit quite different sizes and photophysical properties. The preparation of MEH-PPV nanoparticles from DCM solution provides average size of about 127 nm. Their absorption and photoluminescence (PL) spectra shift to higher energy region compared to those of the isolated chain. When the THF solution is used, opposite results are observed. Average size of the nanoparticles decreases to about 40 nm. Significant redshift of their absorption and PL spectra is also detected. Detailed data analysis indicates that the individual chain conformation and degree of segmental aggregation within the CPNs are quite different. This leads to drastic discrepancies of their photophysical properties. The use of DCM and THF as initial solvents provides the MEH-PPV nanoparticles with green (λ max=535 nm) and red (λ max=590 nm) photoemission, respectively. The investigation of rr-P3OT provides consistent results. Our study offers a new and simple route to control size and photophysical properties of CPNs by careful selection of the initial solvents.

7.
J Colloid Interface Sci ; 389(1): 106-14, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23058980

RESUMO

In this work, polydiacetylene (PDA)/ZnO nanocomposites are successfully fabricated by using three types of monomers with different alkyl chain length, 5,7-hexadecadiynoic acid, 10,12-tricosadiynoic acid, and 10,12-pentacosadiynoic acid. The monomers dispersed in aqueous medium spontaneously assemble onto the surface of ZnO nanoparticles, promoted by strong interfacial interactions. The PDA/ZnO nanocomposites obtained via photopolymerization process are characterized by scanning electron microscopy, laser light scattering, infrared spectroscopy, and uv/vis absorption spectroscopy. The strength of interfacial interactions and morphologies of the nanocomposites are found to vary with alkyl chain length of the monomers. The PDA/ZnO nanocomposites also exhibit rather different thermochromic behaviors compared to their pure PDA counterparts. All nanocomposites show reversible blue/purple color transition upon multiple heating/cooling cycles, while the irreversible blue/red color transition is observed in the systems of pure PDAs. The shortening of alkyl side chain in PDA/ZnO nanocomposites leads to a systematic decrease in their color-transition temperatures. Colors of the nanocomposites at elevated temperature also vary with the alkyl chain length. Our results provide a simple route for controlling the reversible thermochromism of PDA-based materials, allowing their utilization in a wider range of applications.

8.
J Colloid Interface Sci ; 391: 45-53, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23123029

RESUMO

In this contribution, we investigate the color transition behavior of polydiacetylene (PDA) vesicles upon exposure to different chemical stimuli. A series of linear and branched alcohols are used as model additives, allowing systematic control of their molecular shape and polarity. The PDA vesicles are fabricated by using three monomers, 10,12-pentacosadiynoic acid (PCDA), 10,12-tricosadyinoic acid (TCDA), and N-(2-amino ethyl)pentacosa-10,12-dyinamide (AEPCDA). When a series of linear alcohols is used, the longer alcohol length causes color transition of all PDA vesicles. In this system, the penetration of linear alcohols into the inner layer of PDA vesicles is dictated by their polarity. The change of -OH position within the alcohol molecule also affects the degree of penetration. It requires a higher amount of the 2-propanol to induce color transitions of the PDAs compared to that of the 1-propanol. The addition of methyl branches into the hydrophobic tail of alcohols causes an increase in steric effect, which hinders the penetration as well. When the 2,2-dimethyl-1-propanol is used as a stimulus, the color transition of PDAs occurs at much higher alcohol concentration compared to 2-methyl-1-butanol, 3-methyl-1-butanol, and 1-pentanol. The variation of PDA structures also affects their ability to interact with the alcohols. The modified head group of poly(AEPCDA) promotes the ability to distinguish between 1-propanol and 2-propanol or 1-propanol and ethanol.


Assuntos
Álcoois/farmacologia , Cor , Polímeros/química , Poli-Inos/química , Álcoois/química , Ácidos Graxos Insaturados/química , Polímero Poliacetilênico , Relação Estrutura-Atividade
9.
J Colloid Interface Sci ; 360(2): 565-73, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21601866

RESUMO

In this contribution, we report the relationship between molecular structures of polydiacetylene (PDA) vesicles, fabricated by using three monomers, 10,12-tricosadiynoic acid (TCDA), 10,12-pentacosadiynoic acid (PCDA) and N-(2-aminoethyl)pentacosa-10,12-diynamide (AEPCDA), and their color-transition behaviors. The modification of side chain length and head group of the PDA vesicles strongly affects the colorimetric response to temperature, ethanol and pH. A shorter side chain of poly(TCDA) yields weaker inter- and intra-chain dispersion interactions in the bilayers compared to the system of poly(PCDA), which in turn results in a faster color transition upon exposure to all stimuli. A change of head group in poly(AEPCDA) slightly reduces the transition temperature. Interestingly, the colorimetric response of poly(AEPCDA) vesicles to the addition of ethanol is found to occur in a two-step fashion while the response of poly(PCDA) vesicles takes place in a one-step process. The amount of ethanol required for inducing complete color-transition of poly(AEPCDA) vesicles is also much higher, about 87% v/v. The increase of pH to ~9 and ~10 causes a color-transition of poly(TCDA) and poly(PCDA) vesicles, respectively. The poly(AEPCDA) vesicles, on the other hand, change color upon decreasing pH to ~0. The colorimetric response also occurs in a multi-step fashion. These discrepancies are attributed to the architecture of surface layers of poly(AEPCDA), constituting amine and amide groups separated by ethyl linkers.

10.
J Colloid Interface Sci ; 356(2): 481-9, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21306726

RESUMO

This contribution introduces a versatile method to prepare a new class of polydiacetylene(PDA)-based material. ZnO nanoparticle is used as a nano-substrate for spontaneous assembling of diacetylene monomer, 10,12-pentacosadiynoic acid, on its surface. An irradiation of the organized assemblies by UV light results in PDA/ZnO nanocomposites with deep blue color. Strong ionic interaction and hydrogen bonding at the ZnO surface restrict the dynamics of alkyl side chains and promote the PDA ordering, which in turn drastically affects its thermochromic behaviors. We have found that the PDA/ZnO nanocomposite exhibits two-steps color transition upon increasing temperature. The first transition of the nanocomposite in aqueous suspension, causing the color change from blue to purple, occurs reversibly at ∼90°C. The transition temperature shifts to ∼100°C when the nanocomposite is embedded in polyvinyl alcohol matrix. Further increasing temperature to 145°C induces the second transition, which causes irreversible color change from purple to red.


Assuntos
Nanocompostos/química , Nanotecnologia/métodos , Polímeros/química , Poli-Inos/química , Óxido de Zinco/química , Cor , Nanocompostos/ultraestrutura , Polímero Poliacetilênico , Propriedades de Superfície , Temperatura de Transição
11.
J Colloid Interface Sci ; 310(1): 217-28, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17320095

RESUMO

This study compares the stability of various polymeric thin films supported on SiO(x)/Si substrate. Dewetting behaviors of polystyrenes (PS), polychloromethylstyrenes, and random poly(styrene-co-chloromethylstyrene)s are investigated by utilizing atomic force microscopy. A systematic addition of the chloromethylstyrene (ClMS) unit into PS chain causes the increase of segment polarity, affecting interfacial and interchain interactions in thin films. It is found that stability of the polymeric films depends on two major parameters, ratio of the ClMS unit and film thickness. For approximately 5 nm thick film, the addition of only 5 mol% ClMS unit causes a drastic increase of its stability, attributed to the enhanced interfacial interactions between ClMS group and SiO(x) layer. Further increasing the ClMS mole ratio to 20, 45, and 100% is accompanied by a systematic increase of the film stability. Thicker films (thicknesses approximately 22 and approximately 45 nm) of the copolymer with 5 mol% ClMS unit exhibit rather different behavior. They are found to be less stable compared to the PS films. However, the films of copolymers with ClMS unit of 20, 45, and 100% are still much more stable than the PS films. These dewetting behaviors of the copolymers are correlated to the interfacial interactions, interchain interactions and segmental segregation in thin films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...