Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(7): e0307693, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39024287

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0203397.].

2.
Commun Biol ; 6(1): 452, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095219

RESUMO

Familial hypercholesterolemia (FH) patients suffer from excessively high levels of Low Density Lipoprotein Cholesterol (LDL-C), which can cause severe cardiovascular disease. Statins, bile acid sequestrants, PCSK9 inhibitors, and cholesterol absorption inhibitors are all inefficient at treating FH patients with homozygous LDLR gene mutations (hoFH). Drugs approved for hoFH treatment control lipoprotein production by regulating steady-state Apolipoprotein B (apoB) levels. Unfortunately, these drugs have side effects including accumulation of liver triglycerides, hepatic steatosis, and elevated liver enzyme levels. To identify safer compounds, we used an iPSC-derived hepatocyte platform to screen a structurally representative set of 10,000 small molecules from a proprietary library of 130,000 compounds. The screen revealed molecules that could reduce the secretion of apoB from cultured hepatocytes and from humanized livers in mice. These small molecules are highly effective, do not cause abnormal lipid accumulation, and share a chemical structure that is distinct from any known cholesterol lowering drug.


Assuntos
Anticolesterolemiantes , Hipercolesterolemia Familiar Homozigota , Hiperlipoproteinemia Tipo II , Células-Tronco Pluripotentes Induzidas , Humanos , Animais , Camundongos , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/farmacologia , Pró-Proteína Convertase 9/uso terapêutico , LDL-Colesterol , Hiperlipoproteinemia Tipo II/tratamento farmacológico , Hiperlipoproteinemia Tipo II/genética , Anticolesterolemiantes/farmacologia , Apolipoproteínas B/genética , Apolipoproteínas B/farmacologia , Apolipoproteínas B/uso terapêutico , Hepatócitos
3.
Sci Rep ; 12(1): 11210, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778595

RESUMO

Protein kinases that phosphorylate histones are ideally-placed to influence the behavior of chromosomes during cell division. Indeed, a number of conserved histone phosphorylation events occur prominently during mitosis and meiosis in most eukaryotes, including on histone H3 at threonine-3 (H3T3ph). At least two kinases, Haspin and VRK1 (NHK-1/ballchen in Drosophila), have been proposed to carry out this modification. Phosphorylation of H3 by Haspin has defined roles in mitosis, but the significance of VRK1 activity towards histones in dividing cells has been unclear. Here, using in vitro kinase assays, KiPIK screening, RNA interference, and CRISPR/Cas9 approaches, we were unable to substantiate a direct role for VRK1, or its paralogue VRK2, in the phosphorylation of threonine-3 or serine-10 of Histone H3 in mitosis, although loss of VRK1 did slow cell proliferation. We conclude that the role of VRKs, and their more recently identified association with neuromuscular disease and importance in cancers of the nervous system, are unlikely to involve mitotic histone kinase activity. In contrast, Haspin is required to generate H3T3ph during mitosis.


Assuntos
Histonas , Mitose , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Fosforilação , Proteínas Serina-Treonina Quinases , Treonina/metabolismo
4.
Annu Rev Virol ; 9(1): 239-259, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-35584888

RESUMO

Poxviruses, of which vaccinia virus is the prototype, are a large family of double-stranded DNA viruses that replicate exclusively in the cytoplasm of infected cells. This physical and genetic autonomy from the host cell nucleus necessitates that these viruses encode most, if not all, of the proteins required for replication in the cytoplasm. In this review, we follow the life of the viral genome through space and time to address some of the unique challenges that arise from replicating a 195-kb DNA genome in the cytoplasm. We focus on how the genome is released from the incoming virion and deposited into the cytoplasm; how the endoplasmic reticulum is reorganized to form a replication factory, thereby compartmentalizing and helping to protect the replicating genome from immune sensors; how the cellular milieu is tailored to support high-fidelity replication of the genome; and finally, how newly synthesized genomes are faithfully and specifically encapsidated into new virions.


Assuntos
Vaccinia virus , Replicação Viral , Animais , Genoma Viral , Estágios do Ciclo de Vida , Vaccinia virus/genética , Replicação Viral/genética
5.
J Virol ; 96(9): e0213721, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35404095

RESUMO

Vaccinia virus (VV), the prototypic poxvirus, encodes a repertoire of proteins responsible for the metabolism of its large dsDNA genome. Previous work has furthered our understanding of how poxviruses replicate and recombine their genomes, but little is known about whether the poxvirus genome undergoes DNA repair. Our studies here are aimed at understanding how VV responds to exogenous DNA damage introduced by UV irradiation. Irradiation of cells prior to infection decreased protein synthesis and led to an ∼12-fold reduction in viral yield. On top of these cell-specific insults, irradiation of VV infections at 4 h postinfection (hpi) introduced both cyclobutene pyrimidine dimer (CPD) and 6,4-photoproduct (6,4-PP) lesions into the viral genome led to a nearly complete halt to further DNA synthesis and to a further reduction in viral yield (∼35-fold). DNA lesions persisted throughout infection and were indeed present in the genomes encapsidated into nascent virions. Depletion of several cellular proteins that mediate nucleotide excision repair (XP-A, -F, and -G) did not render viral infections hypersensitive to UV. We next investigated whether viral proteins were involved in combatting DNA damage. Infections performed with a virus lacking the A50 DNA ligase were moderately hypersensitive to UV irradiation (∼3-fold). More strikingly, when the DNA polymerase inhibitor cytosine arabinoside (araC) was added to wild-type infections at the time of UV irradiation (4 hpi), an even greater hypersensitivity to UV irradiation was seen (∼11-fold). Virions produced under the latter condition contained elevated levels of CPD adducts, strongly suggesting that the viral polymerase contributes to the repair of UV lesions introduced into the viral genome. IMPORTANCE Poxviruses remain of significant interest because of their continuing clinical relevance, their utility for the development of vaccines and oncolytic therapies, and their illustration of fundamental principles of viral replication and virus/cell interactions. These viruses are unique in that they replicate exclusively in the cytoplasm of infected mammalian cells, providing novel challenges for DNA viruses. How poxviruses replicate, recombine, and possibly repair their genomes is still only partially understood. Using UV irradiation as a form of exogenous DNA damage, we have examined how vaccinia virus metabolizes its genome following insult. We show that even UV irradiation of cells prior to infection diminishes viral yield, while UV irradiation during infection damages the genome, causes a halt in DNA accumulation, and reduces the viral yield more severely. Furthermore, we show that viral proteins, but not the cellular machinery, contribute to a partial repair of the viral genome following UV irradiation.


Assuntos
Genoma Viral , Raios Ultravioleta , Vaccinia virus , Replicação Viral , Animais , Dano ao DNA , Reparo do DNA , Genoma Viral/efeitos da radiação , Mamíferos , Vaccinia virus/genética , Vaccinia virus/efeitos da radiação , Proteínas Virais/metabolismo
6.
J Virol ; 96(2): e0157721, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34730390

RESUMO

An enduring mystery in poxvirology is the mechanism by which virion morphogenesis is accomplished. A30.5 and L2 are two small regulatory proteins that are essential for this process. Previous studies have shown that vaccinia A30.5 and L2 localize to the ER and interact during infection, but how they facilitate morphogenesis is unknown. To interrogate the relationship between A30.5 and L2, we generated inducible complementing cell lines (CV1-HA-L2; CV1-3xFLAG-A30.5) and deletion viruses (vΔL2; vΔA30.5). Loss of either protein resulted in a block in morphogenesis and a significant (>100-fold) decrease in infectious viral yield. Structure-function analysis of L2 and A30.5, using transient complementation assays, identified key functional regions in both proteins. A clustered charge-to-alanine L2 mutant (L2-RRD) failed to rescue a vΔL2 infection and exhibits a significantly retarded apparent molecular weight in vivo (but not in vitro), suggestive of an aberrant posttranslational modification. Furthermore, an A30.5 mutant with a disrupted putative N-terminal α-helix failed to rescue a vΔA30.5 infection. Using our complementing cell lines, we determined that the stability of A30.5 is dependent on L2 and that wild-type L2 and A30.5 coimmunoprecipitate in the absence of other viral proteins. Further examination of this interaction, using wild-type and mutant forms of L2 or A30.5, revealed that the inability of mutant alleles to rescue the respective deletion viruses is tightly correlated with a failure of L2 to stabilize and interact with A30.5. L2 appears to function as a chaperone-like protein for A30.5, ensuring that they work together as a complex during viral membrane biogenesis. IMPORTANCE Vaccinia virus is a large, enveloped DNA virus that was successfully used as the vaccine against smallpox. Vaccinia continues to be an invaluable biomedical research tool in basic research and in gene therapy vector and vaccine development. Although this virus has been studied extensively, the complex process of virion assembly, termed morphogenesis, still puzzles the field. Our work aims to better understand how two small viral proteins that are essential for viral assembly, L2 and A30.5, function during early morphogenesis. We show that A30.5 requires L2 for stability and that these proteins interact in the absence of other viral proteins. We identify regions in each protein required for their function and show that mutations in these regions disrupt the interaction between L2 and A30.5 and fail to restore virus viability.


Assuntos
Morfogênese , Vaccinia virus/crescimento & desenvolvimento , Proteínas não Estruturais Virais/metabolismo , Motivos de Aminoácidos , Animais , Linhagem Celular , Retículo Endoplasmático/metabolismo , Teste de Complementação Genética , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Estabilidade Proteica , Vaccinia virus/genética , Vaccinia virus/metabolismo , Vaccinia virus/ultraestrutura , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Vírion/metabolismo , Vírion/ultraestrutura , Montagem de Vírus
7.
J Clin Transl Sci ; 5(1): e150, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34527290

RESUMO

The Science Writing Initiative for Trainees is a science communications internship program for biomedical graduate students and postdoctoral fellows at the Medical University of South Carolina. Interns serve as an amateur press corps, writing news stories and press releases about recent high-impact research articles. Since 2016, 25 interns have written more than 100 EurekAlert! press releases that have received more than a half million views. Interns learn to explain science across the translational spectrum and to convey findings in plain language to a lay audience, serving as ambassadors for science.

8.
Microlife ; 1(1): uqaa001, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-37223004
9.
Methods Mol Biol ; 2023: 131-141, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31240675

RESUMO

Poxviruses are large, complex dsDNA viruses that are highly unusual in replicating solely within the cytoplasm of the infected cell. The most infamous poxvirus was variola virus, the etiological agent of smallpox; today, poxviruses remain of biomedical significance, both as pathogens and as recombinant vaccines and oncolytic therapies. Vaccinia virus is the prototypic poxvirus for experimental analysis. The 195 kb dsDNA genome contains >200 genes that encode proteins involved in such processes as viral entry, gene expression, genome replication and maturation, virion assembly, virion egress, and immune evasion.Molecular genetic analysis has been instrumental in the study of the structure and function of many viral gene products. Temperature-sensitive (ts) mutants have been especially useful in this endeavor; inducible recombinants and deletion mutants are now also important tools. Once a phenotype is observed following the repression, deletion, or inactivation of a particular gene product, the technique of transient complementation becomes central for further study.Simply put, transient complementation involves the transient expression of a variety of alleles of a given viral gene within infected cells, and the evaluation of which of these alleles can "complement" or "rescue" the phenotype caused by the loss of the endogenous allele. This analysis leads to the identification of key domains, motifs, and sites of posttranslational modification. Subcellular localization and protein:protein interactions can also be evaluated in these studies. The development of a reliable toolbox of vectors encoding viral promoters of different temporal classes, and the use of a variety of epitope tags, has greatly enhanced the utility of this experimental approach for poxvirus research.


Assuntos
Vaccinia virus/genética , Proteínas Virais/genética , Linhagem Celular , Teste de Complementação Genética , Humanos , Vírion/genética , Vírion/metabolismo , Montagem de Vírus/genética , Montagem de Vírus/fisiologia , Replicação Viral/genética , Replicação Viral/fisiologia
10.
PLoS One ; 13(9): e0203397, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30180179

RESUMO

Vaccinia-related kinase 1 (VRK1) is a pro-proliferative nuclear kinase. Mice engrafted with VRK1-depleted MDA-MB-231 breast cancer cells have been shown to develop fewer distal metastases than controls, suggesting VRK1 might play a role in cell migration, invasion, and/or colonization. In work described herein, we investigated the impact of VRK1 overexpression on human mammary epithelial cells. In 2D culture, VRK1 overexpression diminishes cell migration and invasion and impairs the migration-associated processes of cell spreading and cytoskeletal rearrangement. VRK1-overexpressing cells show reduced accumulation of the mesenchymal marker vimentin and increased accumulation of the epithelial markers E-cadherin and claudin-1. VRK1 overexpression also leads to reduced levels of the transcriptional repressors snail, slug, and twist1. Cumulatively, these data indicate that VRK1 overexpression augments the epithelial properties of both MCF10a and MDA-MB-231 cells. We further studied the impact of VRK1 on the epithelial properties of MCF10a cells in 3D matrigel culture, in which cells proliferate and form epithelial sheets that mature into hollow spherical acini. VRK1 overexpression significantly accelerates the initial stages of cell proliferation, leading to larger acini that nevertheless differentiate and mature. Our analysis of human tumor tissue microarrays (TMAs) revealed that VRK1 protein levels are higher in lymph node metastases than in patient-matched mammary tumors. Using public databases, we determined that VRK1 is among the top 10% of overexpressed transcripts in multiple subtypes of invasive breast cancer, and that high levels of VRK1 expression are correlated with decreased relapse-free survival. In sum, overexpression of VRK1, by regulating the transcription repressors snail, slug, and twist1, can promote a mesenchymal-to-epithelial transition (MET) in cell culture. VRK1-mediated MET might facilitate the colonization of distal sites by metastatic breast cancer cells, providing some insight into the frequent association of VRK1 overexpression with breast malignancies and the correlation between VRK1 overexpression and poor clinical outcome.


Assuntos
Neoplasias da Mama/enzimologia , Movimento Celular , Transição Epitelial-Mesenquimal , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Glândulas Mamárias Humanas/enzimologia , Proteínas de Neoplasias/biossíntese , Proteínas Serina-Treonina Quinases/biossíntese , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Caderinas/biossíntese , Caderinas/genética , Linhagem Celular Tumoral , Claudina-1/biossíntese , Claudina-1/genética , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Metástase Linfática , Glândulas Mamárias Humanas/patologia , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Proteínas Serina-Treonina Quinases/genética
11.
Viruses ; 10(4)2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29561772

RESUMO

Evolution has equipped poxvirus genomes with the coding capacity for several virus-host interaction products which interfere with host cell gene expression and protein function, creating an adequate intracellular environment for a productive infection. We show here that Vaccinia virus (VACV) induces the expression of the cellular transcription factor EGR-1 (early growth response-1) in Mouse Embryonic Fibroblasts (MEFs) through the MEK (mitogen-activated protein kinase (MAPK)/ERK)/ERK (extracellular signal-regulated kinases) pathway, from 3 to 12 h post infection (h.p.i.). By using starved egr-1 knockout (egr-1-/-) MEFs, we demonstrate that VACV replication is reduced by ~1 log in this cell line. Although western blotting and electron microscopy analyses revealed no difference in VACV gene expression or morphogenesis, the specific infectivity of VACV propagated in egr-1-/- MEFs was lower than virus propagated in wild type (WT) cells. This lower infectivity was due to decreased VACV DNA replication during the next cycle of infection. Taken together, these results revealed that EGR-1 appears to facilitate VACV replication in starved fibroblasts by affecting viral particles infectivity.


Assuntos
Proteína 1 de Resposta de Crescimento Precoce/genética , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Vaccinia virus/fisiologia , Vacínia/genética , Vacínia/virologia , Animais , Linhagem Celular , Replicação do DNA , DNA Viral , Modelos Animais de Doenças , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Fibroblastos/metabolismo , Fibroblastos/virologia , Deleção de Genes , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Knockout , Fosforilação , Vacínia/metabolismo , Replicação Viral
12.
Virology ; 518: 284-292, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29558682

RESUMO

Vaccinia virus (VACV) A14 is a major envelope protein and a dominant antibody target in the smallpox vaccine. However, the role of anti-A14 antibodies in immunity against orthopoxviruses is unclear. Here, we characterized 22 A14 monoclonal antibodies (mAb) from two mice immunized with VACV. Epitope mapping showed that 21 mAbs targeted the C-terminal hydrophilic region, while one mAb recognized the middle region predicted to be across the viral envelope from the C-terminus. However, none of the mAbs bound to virions in studies with electron microscopy. Interestingly, some mAbs showed low VACV neutralization activities in the presence of complement and provided protection to SCID mice challenged with VACV ACAM2000. Our data showed that, although A14 is an immunodominant antigen in smallpox vaccine, its B cell epitopes are either enclosed within the virions or are inaccessible on virion surface. Anti-A14 antibodies, however, could contribute to protection against VACV through a complement-dependent pathway.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Epitopos Imunodominantes/imunologia , Vacina Antivariólica/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Formação de Anticorpos , Modelos Animais de Doenças , Mapeamento de Epitopos , Camundongos SCID , Vacínia/prevenção & controle
13.
J Virol ; 92(2)2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29093092

RESUMO

Vaccinia virus is unusual among DNA viruses in replicating exclusively in the cytoplasm of infected cells. The single-stranded DNA (ssDNA) binding protein (SSB) I3 is among the replication machinery encoded by the 195-kb genome, although direct genetic analysis of I3 has been lacking. Herein, we describe a complementing cell line (CV1-I3) that fully supports the replication of a null virus (vΔI3) lacking the I3 open reading frame (ORF). In noncomplementing CV1-CAT cells, vΔI3 shows a severe defect in the production of infectious virus (≥200-fold reduction). Early protein synthesis and core disassembly occur normally. However, DNA replication is profoundly impaired (≤0.2% of wild-type [WT] levels), and late proteins do not accumulate. When several other noncomplementing cell lines are infected with vΔI3, the yield of infectious virus is also dramatically reduced (168- to 1,776-fold reduction). Surprisingly, the residual levels of DNA accumulation vary from 1 to 12% in the different cell lines (CV1-CAT < A549 < BSC40 < HeLa); however, any nascent DNA that can be detected is subgenomic in size. Although this subgenomic DNA supports late protein expression, it does not support the production of infectious virions. Electron microscopy (EM) analysis of vΔI3-infected BSC40 cells reveals that immature virions are abundant but no mature virions are observed. Aberrant virions characteristic of a block to genome encapsidation are seen instead. Finally, we demonstrate that a CV1 cell line encoding a previously described I3 variant with impaired ssDNA binding activity is unable to complement vΔI3. This report provides definitive evidence that the vaccinia virus I3 protein is the replicative SSB and is essential for productive viral replication.IMPORTANCE Poxviruses are of historical and contemporary importance as infectious agents, vaccines, and oncolytic therapeutics. The cytoplasmic replication of poxviruses is unique among DNA viruses of mammalian cells and necessitates that the double-stranded DNA (dsDNA) genome encode the viral replication machinery. This study focuses on the I3 protein. As a ssDNA binding protein (SSB), I3 has been presumed to play essential roles in genome replication, recombination, and repair, although genetic analysis has been lacking. Herein, we report the characterization of an I3 deletion virus. In the absence of I3 expression, DNA replication is severely compromised and viral yield profoundly decreased. The production of infectious virus can be restored in a cell line expressing WT I3 but not in a cell line expressing an I3 mutant that is defective in ssDNA binding activity. These data show conclusively that I3 is an essential viral protein and functions as the viral replicative SSB.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Deleção de Sequência , Vaccinia virus/fisiologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral , Linhagem Celular , Replicação do DNA , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Expressão Gênica , Regulação Viral da Expressão Gênica , Teste de Complementação Genética , Humanos , Poxviridae/genética , Poxviridae/metabolismo , Vacínia/virologia , Vaccinia virus/ultraestrutura
14.
Cell Stem Cell ; 20(4): 478-489.e5, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28388428

RESUMO

Efforts to identify pharmaceuticals to treat heritable metabolic liver diseases have been hampered by the lack of models. However, cells with hepatocyte characteristics can be produced from induced pluripotent stem cells (iPSCs). Here, we have used hepatocyte-like cells generated from homozygous familial hypercholesterolemia (hoFH) iPSCs to identify drugs that can potentially be repurposed to lower serum LDL-C. We found that cardiac glycosides reduce the production of apolipoprotein B (apoB) from human hepatocytes in culture and the serum of avatar mice harboring humanized livers. The drugs act by increasing the turnover of apoB protein. Analyses of patient medical records revealed that the treatment of patients with cardiac glycosides reduced serum LDL-C levels. These studies highlight the effectiveness of using iPSCs to screen for potential treatments for inborn errors of hepatic metabolism and suggest that cardiac glycosides could provide an approach for reducing hepatocyte production of apoB and treating hypercholesterolemia.


Assuntos
Glicosídeos Cardíacos/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Hepatócitos/citologia , Hipercolesterolemia/tratamento farmacológico , Células-Tronco Pluripotentes Induzidas/citologia , Animais , Apolipoproteínas B/metabolismo , Glicosídeos Cardíacos/farmacologia , LDL-Colesterol/sangue , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Homozigoto , Humanos , Hipercolesterolemia/sangue , Hipolipemiantes/química , Hipolipemiantes/farmacologia , Hipolipemiantes/uso terapêutico , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Proteólise/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico
15.
Mol Cell Proteomics ; 16(4 suppl 1): S124-S143, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28183815

RESUMO

Vaccinia virus, a complex dsDNA virus, is unusual in replicating exclusively within the cytoplasm of infected cells. Although this prototypic poxvirus encodes >200 proteins utilized during infection, a significant role for host proteins and cellular architecture is increasingly evident. The viral B1 kinase and H1 phosphatase are known to target cellular proteins as well as viral substrates, but little is known about the cellular substrates of the F10 kinase. F10 is essential for virion morphogenesis, beginning with the poorly understood process of diversion of membranes from the ER for the purpose of virion membrane biogenesis. To better understand the function of F10, we generated a cell line that carries a single, inducible F10 transgene. Using uninduced and induced cells, we performed stable isotope labeling of amino acids in cell culture (SILAC) coupled with phosphopeptide analysis to identify cellular targets of F10-mediated phosphorylation. We identified 27 proteins that showed statistically significant changes in phosphorylation upon the expression of the F10 kinase: 18 proteins showed an increase in phosphorylation whereas 9 proteins showed a decrease in phosphorylation. These proteins participate in several distinct cellular processes including cytoskeleton dynamics, membrane trafficking and cellular metabolism. One of the proteins with the greatest change in phosphorylation was mDia, a member of the formin family of cytoskeleton regulators; F10 induction led to increased phosphorylation on Ser22 Induction of F10 induced a statistically significant decrease in the percentage of cells with actin stress fibers; however, this change was abrogated when an mDia Ser22Ala variant was expressed. Moreover, expression of a Ser22Asp variant leads to a reduction of stress fibers even in cells not expressing F10. In sum, we present the first unbiased screen for cellular targets of F10-mediated phosphorylation, and in so doing describe a heretofore unknown mechanism for regulating stress fiber formation through phosphorylation of mDia. Data are available via ProteomeXchange with identifier PXD005246.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteômica/métodos , Fibras de Estresse/metabolismo , Vaccinia virus/metabolismo , Proteínas Virais/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Regulação Viral da Expressão Gênica , Humanos , Marcação por Isótopo , Fosfoproteínas/isolamento & purificação , Fosforilação , Mapas de Interação de Proteínas , Serina/metabolismo
16.
Virus Res ; 234: 193-206, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28159613

RESUMO

Vaccinia virus is the prototypic poxvirus. The 192 kilobase double-stranded DNA viral genome encodes most if not all of the viral replication machinery. The vaccinia virus DNA polymerase is encoded by the E9L gene. Sequence analysis indicates that E9 is a member of the B family of replicative polymerases. The enzyme has both polymerase and 3'-5' exonuclease activities, both of which are essential to support viral replication. Genetic analysis of E9 has identified residues and motifs whose alteration can confer temperature-sensitivity, drug resistance (phosphonoacetic acid, aphidicolin, cytosine arabinsode, cidofovir) or altered fidelity. The polymerase is involved both in DNA replication and in recombination. Although inherently distributive, E9 gains processivity by interacting in a 1:1 stoichiometry with a heterodimer of the A20 and D4 proteins. A20 binds to both E9 and D4 and serves as a bridge within the holoenzyme. The A20/D4 heterodimer has been purified and can confer processivity on purified E9. The interaction of A20 with D4 is mediated by the N'-terminus of A20. The D4 protein is an enzymatically active uracil DNA glycosylase. The DNA-scanning activity of D4 is proposed to keep the holoenzyme tethered to the DNA template but allow polymerase translocation. The crystal structure of D4, alone and in complex with A201-50 and/or DNA has been solved. Screens for low molecular weight compounds that interrupt the A201-50/D4 interface have yielded hits that disrupt processive DNA synthesis in vitro and/or inhibit plaque formation. The observation that an active DNA repair enzyme is an integral part of the holoenzyme suggests that DNA replication and repair may be coupled.


Assuntos
DNA Viral/biossíntese , DNA Polimerase Dirigida por DNA/metabolismo , Multimerização Proteica , Uracila-DNA Glicosidase/metabolismo , Vaccinia virus/enzimologia , Proteínas Virais/metabolismo , DNA Polimerase Dirigida por DNA/química , Ligação Proteica , Recombinação Genética , Uracila-DNA Glicosidase/química , Proteínas Virais/química , Replicação Viral
17.
mBio ; 6(3): e00345-15, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-26015494

RESUMO

UNLABELLED: We have shown previously that A-type lamins and intranuclear localization of the herpes simplex virus (HSV) genome are critical for the formation of the VP16 activator complex on HSV immediate-early (IE) gene promoters in murine cells, which implies a critical role for lamin A and its associated proteins in HSV gene expression. Because barrier-to-autointegration factor 1 (BAF/BANF1) has been thought to bridge chromosomes to the nuclear lamina, we hypothesized that BAF might mediate viral genome targeting to the nuclear lamina. We found that overexpression of BAF enhances HSV-1 replication and knockdown of BAF decreases HSV gene expression, delays the kinetics of viral early replication compartment formation, and reduces viral yield compared to those in control small interfering RNA-transfected cells. However, BAF depletion did not affect genome complex targeting to the nuclear periphery. Instead, we found that the levels of a histone-modifying enzyme, SETD1A methyltransferase, and histone H3 lysine 4 trimethylation were reduced on IE and early (E) gene promoters in BAF-depleted cells during HSV lytic infection. Our results demonstrate a novel function of BAF as an epigenetic regulator of HSV lytic infection. We hypothesize that BAF facilitates IE and E gene expression by recruiting the SETD1A methyltransferase to viral IE and E gene promoters. IMPORTANCE: The nuclear lamina is composed of lamin proteins and numerous lamina-associated proteins. Previously, the chromatin structure of DNA localized proximally to the lamina was thought to be characterized by heterochromatin marks associated with silenced genes. However, recent studies indicate that both heterochromatin- and euchromatin-rich areas coexist on the lamina. This paradigm suggests that lamins and lamina-associated proteins dynamically regulate epigenetic modifications of specific genes in different locations. Our goal is to understand how the lamina and its associated proteins regulate the epigenetics of genes through the study of HSV infection of human cells. We have shown previously that A-type lamins are critical for HSV genome targeting to the nuclear lamina and epigenetic regulation in viral replication. In this study, we found that another lamina-associated protein, BAF, regulates HSV gene expression through an epigenetic mechanism, which provides basic insights into the nuclear lamina and its associated proteins' roles in epigenetic regulation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Genes Precoces , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiologia , Histona-Lisina N-Metiltransferase/metabolismo , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Linhagem Celular , Núcleo Celular/genética , Núcleo Celular/virologia , Replicação do DNA , Proteínas de Ligação a DNA/genética , Epigênese Genética , Regulação Viral da Expressão Gênica , Genes Virais , Genoma Viral , Células HeLa , Proteína Vmw65 do Vírus do Herpes Simples/metabolismo , Heterocromatina/genética , Histona Metiltransferases , Humanos , Lamina Tipo A/metabolismo , Proteínas Nucleares/genética , Replicação Viral
18.
J Virol ; 89(12): 6312-27, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25855734

RESUMO

UNLABELLED: The duplication of the poxvirus double-stranded DNA genome occurs in cytoplasmic membrane-delimited factories. This physical autonomy from the host nucleus suggests that poxvirus genomes encode the full repertoire of proteins committed for genome replication. Biochemical and genetic analyses have confirmed that six viral proteins are required for efficient DNA synthesis; indirect evidence has suggested that the multifunctional H5 protein may also have a role. Here we show that H5 localizes to replication factories, as visualized by immunofluorescence and immunoelectron microscopy, and can be retrieved upon purification of the viral polymerase holoenzyme complex. The temperature-sensitive (ts) mutant Dts57, which was generated by chemical mutagenesis and has a lesion in H5, exhibits defects in DNA replication and morphogenesis under nonpermissive conditions, depending upon the experimental protocol. The H5 variant encoded by the genome of this mutant is ts for function but not stability. For a more precise investigation of how H5 contributes to DNA synthesis, we placed the ts57 H5 allele in an otherwise wild-type viral background and also performed small interfering RNA-mediated depletion of H5. Finally, we generated a complementing cell line, CV-1-H5, which allowed us to generate a viral recombinant in which the H5 open reading frame was deleted and replaced with mCherry (vΔH5). Analysis of vΔH5 allowed us to demonstrate conclusively that viral DNA replication is abrogated in the absence of H5. The loss of H5 does not compromise the accumulation of other early viral replication proteins or the uncoating of the virion core, suggesting that H5 plays a direct and essential role in facilitating DNA synthesis. IMPORTANCE: Variola virus, the causative agent of smallpox, is the most notorious member of the Poxviridae family. Poxviruses are unique among DNA viruses that infect mammalian cells, in that their replication is restricted to the cytoplasm of the cell. This physical autonomy from the nucleus has both cell biological and genetic ramifications. Poxviruses must establish cytoplasmic niches that support replication, and the genomes must encode the repertoire of proteins necessary for genome synthesis. Here we focus on H5, a multifunctional and abundant viral protein. We confirm that H5 associates with the DNA polymerase holoenzyme and localizes to the sites of DNA synthesis. By generating an H5-expressing cell line, we were able to isolate a deletion virus that lacks the H5 gene and show definitively that genome synthesis does not occur in the absence of H5. These data support the hypothesis that H5 is a crucial participant in cytoplasmic poxvirus genome replication.


Assuntos
Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Vaccinia virus/fisiologia , Proteínas Virais/metabolismo , Replicação Viral , Animais , Linhagem Celular , Chlorocebus aethiops , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Deleção de Genes , Técnicas de Silenciamento de Genes , Teste de Complementação Genética , Humanos , Mutagênese , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/genética
19.
PLoS Pathog ; 10(3): e1004021, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24651651

RESUMO

The poxvirus life cycle, although physically autonomous from the host nucleus, is nevertheless dependent upon cellular functions. A requirement for de novo fatty acid biosynthesis was implied by our previous demonstration that cerulenin, a fatty acid synthase inhibitor, impaired vaccinia virus production. Here we show that additional inhibitors of this pathway, TOFA and C75, reduce viral yield significantly, with partial rescue provided by exogenous palmitate, the pathway's end-product. Palmitate's major role during infection is not for phospholipid synthesis or protein palmitoylation. Instead, the mitochondrial import and ß-oxidation of palmitate are essential, as shown by the impact of etomoxir and trimetazidine, which target these two processes respectively. Moreover, the impact of these inhibitors is exacerbated in the absence of exogenous glucose, which is otherwise dispensable for infection. In contrast to glucose, glutamine is essential for productive viral infection, providing intermediates that sustain the TCA cycle (anaplerosis). Cumulatively, these data suggest that productive infection requires the mitochondrial ß-oxidation of palmitate which drives the TCA cycle and energy production. Additionally, infection causes a significant rise in the cellular oxygen consumption rate (ATP synthesis) that is ablated by etomoxir. The biochemical progression of the vaccinia life cycle is not impaired in the presence of TOFA, C75, or etomoxir, although the levels of viral DNA and proteins synthesized are somewhat diminished. However, by reversibly arresting infections at the onset of morphogenesis, and then monitoring virus production after release of the block, we determined that virion assembly is highly sensitive to TOFA and C75. Electron microscopic analysis of cells released into C75 revealed fragmented aggregates of viroplasm which failed to be enclosed by developing virion membranes. Taken together, these data indicate that vaccinia infection, and in particular virion assembly, relies on the synthesis and mitochondrial import of fatty acids, where their ß-oxidation drives robust ATP production.


Assuntos
Ácidos Graxos/biossíntese , Interações Hospedeiro-Parasita/fisiologia , Palmitatos/metabolismo , Infecções por Poxviridae/metabolismo , Vaccinia virus/metabolismo , Montagem de Vírus/fisiologia , Animais , Linhagem Celular , Chlorocebus aethiops , Eletroforese em Gel de Campo Pulsado , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Vírion/metabolismo
20.
Mol Biol Cell ; 25(6): 891-903, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24430874

RESUMO

Barrier to autointegration factor (BAF), which is encoded by the BANF1 gene, binds with high-affinity to double-stranded DNA and LEM domain-containing proteins at the nuclear periphery. A BANF1 mutation has recently been associated with a novel human progeria syndrome, and cells from these patients have aberrant nuclear envelopes. The interactions of BAF with its DNA- and protein-binding partners are known to be regulated by phosphorylation, and previously we validated BAF as a highly efficient substrate for the VRK1 protein kinase. Here we show that depletion of VRK1 in MCF10a and MDA-MB-231 cells results in aberrant nuclear architecture. The immobile fraction of green fluorescent protein (GFP)-BAF at the nuclear envelope (NE) is elevated, suggesting that prolonged interactions of BAF with its binding partners is likely responsible for the aberrant NE architecture. Because detachment of BAF from its binding partners is associated with NE disassembly, we performed live-imaging analysis of control and VRK1-depleted cells to visualize GFP-BAF dynamics during mitosis. In the absence of VRK1, BAF does not disperse but instead remains chromosome bound from the onset of mitosis. VRK1 depletion also increases the number of anaphase bridges and multipolar spindles. Thus phosphorylation of BAF by VRK1 is essential both for normal NE architecture and proper dynamics of BAF-chromosome interactions during mitosis. These results are consistent with previous studies of the VRK/BAF signaling axis in Caenorhabditis elegans and Drosophila melanogaster and validate VRK1 as a key regulator of NE architecture and mitotic chromosome dynamics in mammalian cells.


Assuntos
Cromossomos/metabolismo , Proteínas de Ligação a DNA/genética , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Mitose , Membrana Nuclear/ultraestrutura , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinases/deficiência , Fuso Acromático/ultraestrutura , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Fuso Acromático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...