Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Diabetes ; 73(10): 1716-1727, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38976454

RESUMO

Increased plasma levels of glucagon (hyperglucagonemia) promote diabetes development but are also observed in patients with metabolic dysfunction-associated steatotic liver disease (MASLD). This may reflect hepatic glucagon resistance toward amino acid catabolism. A clinical test for measuring glucagon resistance has not been validated. We evaluated our glucagon sensitivity (GLUSENTIC) test, which consists of 2 study days: a glucagon injection and measurements of plasma amino acids and an infusion of mixed amino acids and subsequent calculation of the GLUSENTIC index (primary outcome measure) from measurements of glucagon and amino acids. To distinguish glucagon-dependent from insulin-dependent actions on amino acid metabolism, we also studied patients with type 1 diabetes (T1D). The δ-decline in total amino acids was 49% lower in MASLD following exogenous glucagon (P = 0.01), and the calculated GLUSENTIC index was 34% lower in MASLD (P < 0.0001) but not T1D (P > 0.99). In contrast, glucagon-induced glucose increments were similar in control participants and participants with MASLD (P = 0.41). The GLUSENTIC test and index may be used to measure glucagon resistance in individuals with obesity and MASLD.


Assuntos
Fígado Gorduroso , Glucagon , Obesidade , Humanos , Glucagon/sangue , Masculino , Feminino , Fígado Gorduroso/metabolismo , Obesidade/metabolismo , Pessoa de Meia-Idade , Adulto , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/fisiopatologia , Aminoácidos/sangue , Glicemia/metabolismo
2.
Diabetes ; 73(10): 1641-1647, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39052774

RESUMO

It is not completely clear which organs are responsible for glucagon elimination in humans, and disturbances in the elimination of glucagon could contribute to the hyperglucagonemia observed in chronic liver disease and chronic kidney disease (CKD). Here, we evaluated kinetics and metabolic effects of exogenous glucagon in individuals with stage 4 CKD (n = 16), individuals with Child-Pugh A-C cirrhosis (n = 16), and matched control individuals (n = 16), before, during, and after a 60-min glucagon infusion (4 ng/kg/min). Individuals with CKD exhibited a significantly lower mean metabolic clearance rate of glucagon (14.0 [95% CI 12.2;15.7] mL/kg/min) compared with both individuals with cirrhosis (19.7 [18.1;21.3] mL/kg/min, P < 0.001) and control individuals (20.4 [18.1;22.7] mL/kg/min, P < 0.001). Glucagon half-life was significantly prolonged in the CKD group (7.5 [6.9;8.2] min) compared with individuals with cirrhosis (5.7 [5.2;6.3] min, P = 0.002) and control individuals (5.7 [5.2;6.3] min, P < 0.001). No difference in the effects of exogenous glucagon on plasma glucose, amino acids, or triglycerides was observed between groups. In conclusion, CKD, but not liver cirrhosis, leads to a significant reduction in glucagon clearance, supporting the kidneys as a primary site for human glucagon elimination.


Assuntos
Glucagon , Cirrose Hepática , Insuficiência Renal Crônica , Humanos , Glucagon/metabolismo , Glucagon/sangue , Cirrose Hepática/metabolismo , Masculino , Feminino , Insuficiência Renal Crônica/metabolismo , Pessoa de Meia-Idade , Idoso , Taxa de Depuração Metabólica , Adulto , Estudos de Casos e Controles
3.
NPJ Aging ; 9(1): 7, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37012386

RESUMO

The gut microbiota impacts systemic levels of multiple metabolites including NAD+ precursors through diverse pathways. Nicotinamide riboside (NR) is an NAD+ precursor capable of regulating mammalian cellular metabolism. Some bacterial families express the NR-specific transporter, PnuC. We hypothesized that dietary NR supplementation would modify the gut microbiota across intestinal sections. We determined the effects of 12 weeks of NR supplementation on the microbiota composition of intestinal segments of high-fat diet-fed (HFD) rats. We also explored the effects of 12 weeks of NR supplementation on the gut microbiota in humans and mice. In rats, NR reduced fat mass and tended to decrease body weight. Interestingly, NR increased fat and energy absorption but only in HFD-fed rats. Moreover, 16S rRNA gene sequencing analysis of intestinal and fecal samples revealed an increased abundance of species within Erysipelotrichaceae and Ruminococcaceae families in response to NR. PnuC-positive bacterial strains within these families showed an increased growth rate when supplemented with NR. The abundance of species within the Lachnospiraceae family decreased in response to HFD irrespective of NR. Alpha and beta diversity and bacterial composition of the human fecal microbiota were unaltered by NR, but in mice, the fecal abundance of species within Lachnospiraceae increased while abundances of Parasutterella and Bacteroides dorei species decreased in response to NR. In conclusion, oral NR altered the gut microbiota in rats and mice, but not in humans. In addition, NR attenuated body fat mass gain in rats, and increased fat and energy absorption in the HFD context.

4.
J Lipid Res ; 64(9): 100361, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36958721

RESUMO

N-acyl taurines (NATs) are bioactive lipids with emerging roles in glucose homeostasis and lipid metabolism. The acyl chains of hepatic and biliary NATs are enriched in polyunsaturated fatty acids (PUFAs). Dietary supplementation with a class of PUFAs, the omega-3 fatty acids, increases their cognate NATs in mice and humans. However, the synthesis pathway of the PUFA-containing NATs remains undiscovered. Here, we report that human livers synthesize NATs and that the acyl-chain preference is similar in murine liver homogenates. In the mouse, we found that hepatic NAT synthase activity localizes to the peroxisome and depends upon an active-site cysteine. Using unbiased metabolomics and proteomics, we identified bile acid-CoA:amino acid N-acyltransferase (BAAT) as the likely hepatic NAT synthase in vitro. Subsequently, we confirmed that BAAT knockout livers lack up to 90% of NAT synthase activity and that biliary PUFA-containing NATs are significantly reduced compared with wildtype. In conclusion, we identified the in vivo PUFA-NAT synthase in the murine liver and expanded the known substrates of the bile acid-conjugating enzyme, BAAT, beyond classic bile acids to the synthesis of a novel class of bioactive lipids.


Assuntos
Ácidos e Sais Biliares , Ácidos Graxos Ômega-3 , Camundongos , Humanos , Animais , Ácidos e Sais Biliares/metabolismo , Taurina/metabolismo , Fígado/metabolismo , Ácidos Graxos Insaturados/metabolismo , Aciltransferases/metabolismo , Aminoácidos/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos Ômega-3/metabolismo
5.
iScience ; 25(11): 105296, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36325048

RESUMO

The pancreatic hormone, glucagon, is known to regulate hepatic glucose production, but recent studies suggest that its regulation of hepatic amino metabolism is equally important. Here, we show that chronic glucagon receptor activation with a long-acting glucagon analog increases amino acid catabolism and ureagenesis and causes alpha cell hypoplasia in female mice. Conversely, chronic glucagon receptor inhibition with a glucagon receptor antibody decreases amino acid catabolism and ureagenesis and causes alpha cell hyperplasia and beta cell loss. These effects were associated with the transcriptional regulation of hepatic genes related to amino acid uptake and catabolism and by the non-transcriptional modulation of the rate-limiting ureagenesis enzyme, carbamoyl phosphate synthetase-1. Our results support the importance of glucagon receptor signaling for amino acid homeostasis and pancreatic islet integrity in mice and provide knowledge regarding the long-term consequences of chronic glucagon receptor agonism and antagonism.

6.
Hepatol Commun ; 6(10): 2765-2780, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35866568

RESUMO

Bile acid-CoA: amino acid N-acyltransferase (BAAT) catalyzes bile acid conjugation, the last step in bile acid synthesis. BAAT gene mutation in humans results in hypercholanemia, growth retardation, and fat-soluble vitamin insufficiency. The current study investigated the physiological function of BAAT in bile acid and lipid metabolism using Baat-/- mice. The bile acid composition and hepatic gene expression were analyzed in 10-week-old Baat-/- mice. They were also challenged with a westernized diet (WD) for additional 15 weeks to assess the role of BAAT in bile acid, lipid, and glucose metabolism. Comprehensive lab animal monitoring system and cecal 16S ribosomal RNA gene sequencing were used to evaluate the energy metabolism and microbiome structure of the mice, respectively. In Baat-/- mice, hepatic bile acids were mostly unconjugated and their levels were significantly increased compared with wild-type mice. Bile acid polyhydroxylation was markedly up-regulated to detoxify unconjugated bile acid accumulated in Baat-/- mice. Although the level of serum marker of bile acid synthesis, 7α-hydroxy-4-cholesten-3-one, was higher in Baat-/- mice, their bile acid pool size was smaller. When fed a WD, the Baat-/- mice showed a compromised body weight gain and impaired insulin secretion. The gut microbiome of Baat-/- mice showed a low level of sulfidogenic bacteria Bilophila. Conclusion: Mouse BAAT is the major taurine-conjugating enzyme. Its deletion protected the animals from diet-induced obesity, but caused glucose intolerance. The gut microbiome of the Baat-/- mice was altered to accommodate the unconjugated bile acid pool.


Assuntos
Disbiose , Metabolismo dos Lipídeos , Aciltransferases/genética , Aminoácidos/metabolismo , Animais , Ácidos e Sais Biliares , Coenzima A/metabolismo , Glucose , Humanos , Hiperfagia , Metabolismo dos Lipídeos/genética , Lipídeos , Camundongos , Taurina , Vitaminas
7.
Diabetologia ; 65(6): 1018-1031, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35325259

RESUMO

AIM/HYPOTHESIS: Urocortin-3 (UCN3) is a glucoregulatory peptide produced in the gut and pancreatic islets. The aim of this study was to clarify the acute effects of UCN3 on glucose regulation following an oral glucose challenge and to investigate the mechanisms involved. METHODS: We studied the effect of UCN3 on blood glucose, gastric emptying, glucose absorption and secretion of gut and pancreatic hormones in male rats. To supplement these physiological studies, we mapped the expression of UCN3 and the UCN3-sensitive receptor, type 2 corticotropin-releasing factor receptor (CRHR2), by means of fluorescence in situ hybridisation and by gene expression analysis. RESULTS: In rats, s.c. administration of UCN3 strongly inhibited gastric emptying and glucose absorption after oral administration of glucose. Direct inhibition of gastrointestinal motility may be responsible because UCN3's cognate receptor, CRHR2, was detected in gastric submucosal plexus and in interstitial cells of Cajal. Despite inhibited glucose absorption, post-challenge blood glucose levels matched those of rats given vehicle in the low-dose UCN3 group, because UCN3 concomitantly inhibited insulin secretion. Higher UCN3 doses did not further inhibit gastric emptying, but the insulin inhibition progressed resulting in elevated post-challenge glucose and lipolysis. Incretin hormones and somatostatin (SST) secretion from isolated perfused rat small intestine was unaffected by UCN3 infusion; however, UCN3 infusion stimulated secretion of somatostatin from delta cells in the isolated perfused rat pancreas which, unlike alpha cells and beta cells, expressed Crhr2. Conversely, acute antagonism of CRHR2 signalling increased insulin secretion by reducing SST signalling. Consistent with these observations, acute drug-induced inhibition of CRHR2 signalling improved glucose tolerance in rats to a similar degree as administration of glucagon-like peptide-1. UCN3 also powerfully inhibited glucagon secretion from isolated perfused rat pancreas (perfused with 3.5 mmol/l glucose) in a SST-dependent manner, suggesting that UCN3 may be involved in glucose-induced inhibition of glucagon secretion. CONCLUSIONS/INTERPRETATION: Our combined data indicate that UCN3 is an important glucoregulatory hormone that acts through regulation of gastrointestinal and pancreatic functions.


Assuntos
Ilhotas Pancreáticas , Urocortinas , Animais , Glicemia/metabolismo , Glucagon/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Masculino , Ratos , Somatostatina/metabolismo , Urocortinas/metabolismo
8.
Cell Metab ; 34(2): 317-328.e6, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35108517

RESUMO

Excessive alcohol consumption is a major health and social issue in our society. Pharmacologic administration of the endocrine hormone fibroblast growth factor 21 (FGF21) suppresses alcohol consumption through actions in the brain in rodents, and genome-wide association studies have identified single nucleotide polymorphisms in genes involved with FGF21 signaling as being associated with increased alcohol consumption in humans. However, the neural circuit(s) through which FGF21 signals to suppress alcohol consumption are unknown, as are its effects on alcohol consumption in higher organisms. Here, we demonstrate that administration of an FGF21 analog to alcohol-preferring non-human primates reduces alcohol intake by 50%. Further, we reveal that FGF21 suppresses alcohol consumption through a projection-specific subpopulation of KLB-expressing neurons in the basolateral amygdala. Our results illustrate how FGF21 suppresses alcohol consumption through a specific population of neurons in the brain and demonstrate its therapeutic potential in non-human primate models of excessive alcohol consumption.


Assuntos
Fatores de Crescimento de Fibroblastos , Estudo de Associação Genômica Ampla , Consumo de Bebidas Alcoólicas , Animais , Sistema Endócrino/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo
9.
J Biol Chem ; 297(6): 101388, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34762911

RESUMO

Nicotinamide phosphoribosyltransferase (NAMPT) converts nicotinamide to NAD+. As low hepatic NAD+ levels have been linked to the development of nonalcoholic fatty liver disease, we hypothesized that ablation of hepatic Nampt would affect susceptibility to liver injury in response to diet-induced metabolic stress. Following 3 weeks on a low-methionine and choline-free 60% high-fat diet, hepatocyte-specific Nampt knockout (HNKO) mice accumulated less triglyceride than WT littermates but had increased histological scores for liver inflammation, necrosis, and fibrosis. Surprisingly, liver injury was also observed in HNKO mice on the purified control diet. This HNKO phenotype was associated with decreased abundance of mitochondrial proteins, especially proteins involved in oxidoreductase activity. High-resolution respirometry revealed lower respiratory capacity in purified control diet-fed HNKO liver. In addition, fibrotic area in HNKO liver sections correlated negatively with hepatic NAD+, and liver injury was prevented by supplementation with NAD+ precursors nicotinamide riboside and nicotinic acid. MS-based proteomic analysis revealed that nicotinamide riboside supplementation rescued hepatic levels of oxidoreductase and OXPHOS proteins. Finally, single-nucleus RNA-Seq showed that transcriptional changes in the HNKO liver mainly occurred in hepatocytes, and changes in the hepatocyte transcriptome were associated with liver necrosis. In conclusion, HNKO livers have reduced respiratory capacity, decreased abundance of mitochondrial proteins, and are susceptible to fibrosis because of low NAD+ levels. Our data suggest a critical threshold level of hepatic NAD+ that determines the predisposition to liver injury and supports that NAD+ precursor supplementation can prevent liver injury and nonalcoholic fatty liver disease progression.


Assuntos
Hepatócitos/metabolismo , Mitocôndrias Hepáticas/metabolismo , NAD/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Citocinas/deficiência , Citocinas/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias Hepáticas/genética , NAD/genética , Nicotinamida Fosforribosiltransferase/deficiência , Nicotinamida Fosforribosiltransferase/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Fosforilação Oxidativa , Fenótipo
10.
Int J Mol Sci ; 22(3)2021 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-33498933

RESUMO

As catabolites of nicotinamide possess physiological relevance, pyridones are often included in metabolomics measurements and associated with pathological outcomes in acute kidney injury (AKI). Pyridones are oxidation products of nicotinamide, its methylated form, and its ribosylated form. While they are viewed as markers of over-oxidation, they are often wrongly reported or mislabeled. To address this, we provide a comprehensive characterization of these catabolites of vitamin B3, justify their nomenclature, and differentiate between the biochemical pathways that lead to their generation. Furthermore, we identify an enzymatic and a chemical process that accounts for the formation of the ribosylated form of these pyridones, known to be cytotoxic. Finally, we demonstrate that the ribosylated form of one of the pyridones, the 4-pyridone-3-carboxamide riboside (4PYR), causes HepG3 cells to die by autophagy; a process that occurs at concentrations that are comparable to physiological concentrations of this species in the plasma in AKI patients.


Assuntos
NAD/metabolismo , Niacinamida/metabolismo , Piridonas/metabolismo , Autofagia , Linhagem Celular Tumoral , Células HEK293 , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/fisiopatologia , Piridonas/química , Piridonas/farmacologia , Piridonas/uso terapêutico
11.
J Biol Chem ; 295(52): 17986-17996, 2020 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-33051211

RESUMO

Poly(ADP-ribose) polymerase (PARP) superfamily members covalently link either a single ADP-ribose (ADPR) or a chain of ADPR units to proteins using NAD as the source of ADPR. Although the well-known poly(ADP-ribosylating) (PARylating) PARPs primarily function in the DNA damage response, many noncanonical mono(ADP-ribosylating) (MARylating) PARPs are associated with cellular antiviral responses. We recently demonstrated robust up-regulation of several PARPs following infection with murine hepatitis virus (MHV), a model coronavirus. Here we show that SARS-CoV-2 infection strikingly up-regulates MARylating PARPs and induces the expression of genes encoding enzymes for salvage NAD synthesis from nicotinamide (NAM) and nicotinamide riboside (NR), while down-regulating other NAD biosynthetic pathways. We show that overexpression of PARP10 is sufficient to depress cellular NAD and that the activities of the transcriptionally induced enzymes PARP7, PARP10, PARP12 and PARP14 are limited by cellular NAD and can be enhanced by pharmacological activation of NAD synthesis. We further demonstrate that infection with MHV induces a severe attack on host cell NAD+ and NADP+ Finally, we show that NAMPT activation, NAM, and NR dramatically decrease the replication of an MHV that is sensitive to PARP activity. These data suggest that the antiviral activities of noncanonical PARP isozyme activities are limited by the availability of NAD and that nutritional and pharmacological interventions to enhance NAD levels may boost innate immunity to coronaviruses.


Assuntos
COVID-19/metabolismo , NAD/imunologia , Poli(ADP-Ribose) Polimerases/imunologia , SARS-CoV-2/imunologia , Células A549 , ADP-Ribosilação , Adenosina Difosfato Ribose/metabolismo , Adulto , Animais , COVID-19/imunologia , Linhagem Celular Tumoral , Feminino , Furões , Humanos , Imunidade Inata , Masculino , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , NAD/metabolismo , Niacinamida/análogos & derivados , Niacinamida/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/sangue , Compostos de Piridínio , SARS-CoV-2/metabolismo
12.
Mol Metab ; 42: 101080, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32937194

RESUMO

OBJECTIVE: Glucagon is well known to regulate blood glucose but may be equally important for amino acid metabolism. Plasma levels of amino acids are regulated by glucagon-dependent mechanism(s), while amino acids stimulate glucagon secretion from alpha cells, completing the recently described liver-alpha cell axis. The mechanisms underlying the cycle and the possible impact of hepatic steatosis are unclear. METHODS: We assessed amino acid clearance in vivo in mice treated with a glucagon receptor antagonist (GRA), transgenic mice with 95% reduction in alpha cells, and mice with hepatic steatosis. In addition, we evaluated urea formation in primary hepatocytes from ob/ob mice and humans, and we studied acute metabolic effects of glucagon in perfused rat livers. We also performed RNA sequencing on livers from glucagon receptor knock-out mice and mice with hepatic steatosis. Finally, we measured individual plasma amino acids and glucagon in healthy controls and in two independent cohorts of patients with biopsy-verified non-alcoholic fatty liver disease (NAFLD). RESULTS: Amino acid clearance was reduced in mice treated with GRA and mice lacking endogenous glucagon (loss of alpha cells) concomitantly with reduced production of urea. Glucagon administration markedly changed the secretion of rat liver metabolites and within minutes increased urea formation in mice, in perfused rat liver, and in primary human hepatocytes. Transcriptomic analyses revealed that three genes responsible for amino acid catabolism (Cps1, Slc7a2, and Slc38a2) were downregulated both in mice with hepatic steatosis and in mice with deletion of the glucagon receptor. Cultured ob/ob hepatocytes produced less urea upon stimulation with mixed amino acids, and amino acid clearance was lower in mice with hepatic steatosis. Glucagon-induced ureagenesis was impaired in perfused rat livers with hepatic steatosis. Patients with NAFLD had hyperglucagonemia and increased levels of glucagonotropic amino acids, including alanine in particular. Both glucagon and alanine levels were reduced after diet-induced reduction in Homeostatic Model Assessment for Insulin Resistance (HOMA-IR, a marker of hepatic steatosis). CONCLUSIONS: Glucagon regulates amino acid metabolism both non-transcriptionally and transcriptionally. Hepatic steatosis may impair glucagon-dependent enhancement of amino acid catabolism.


Assuntos
Aminoácidos/metabolismo , Fígado Gorduroso/fisiopatologia , Glucagon/metabolismo , Adulto , Animais , Glicemia/metabolismo , Fígado Gorduroso/metabolismo , Feminino , Glucagon/fisiologia , Células Secretoras de Glucagon/metabolismo , Glucose/metabolismo , Hepatócitos/metabolismo , Humanos , Insulina/metabolismo , Resistência à Insulina/fisiologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ratos , Ratos Wistar , Receptores de Glucagon/antagonistas & inibidores , Receptores de Glucagon/metabolismo , Ureia/metabolismo
13.
bioRxiv ; 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-32511303

RESUMO

Poly-ADP-ribose polymerase (PARP) superfamily members covalently link either a single ADP-ribose (ADPR) or a chain of ADPR units to proteins using nicotinamide adenine dinucleotide (NAD) as the source of ADPR. While the well-known poly-ADP-ribosylating (PARylating) PARPs primarily function in the DNA damage response, many non-canonical mono-ADP-ribosylating (MARylating) PARPs are associated with cellular antiviral responses. We recently demonstrated robust upregulation of several PARPs following infection with Murine Hepatitis Virus (MHV), a model coronavirus. Here we show that SARS-CoV-2 infection strikingly upregulates MARylating PARPs and induces the expression of genes encoding enzymes for salvage NAD synthesis from nicotinamide (NAM) and nicotinamide riboside (NR), while downregulating other NAD biosynthetic pathways. We show that overexpression of PARP10 is sufficient to depress cellular NAD and that the activities of the transcriptionally induced enzymes PARP7, PARP10, PARP12 and PARP14 are limited by cellular NAD and can be enhanced by pharmacological activation of NAD synthesis. We further demonstrate that infection with MHV induces a severe attack on host cell NAD+ and NADP+. Finally, we show that NAMPT activation, NAM and NR dramatically decrease the replication of an MHV virus that is sensitive to PARP activity. These data suggest that the antiviral activities of noncanonical PARP isozyme activities are limited by the availability of NAD, and that nutritional and pharmacological interventions to enhance NAD levels may boost innate immunity to coronaviruses.

14.
Molecules ; 25(10)2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32443832

RESUMO

Farnesoid X receptor (FXR) and Takeda G-protein coupled receptor 5 (TGR5) are the two known bile acid (BA) sensitive receptors and are expressed in the intestine and liver as well as in extra-enterohepatic tissues. The physiological effects of extra-enterohepatic FXR/TRG5 remain unclear. Further, the extent BAs escape liver reabsorption and how they interact with extra-enterohepatic FXR/TGR5 is understudied. We investigated if hepatic BA reuptake differed between BAs agonistic for FXR and TGR5 compared to non-agonists in the rat. Blood was collected from the portal vein and inferior caval vein from anesthetized rats before and 5, 20, 30, and 40 min post stimulation with sulfated cholecystokinin-8. Plasma concentrations of 20 different BAs were assessed by liquid chromatography coupled to mass spectrometry. Total portal vein BA AUC was 3-4 times greater than in the vena cava inferior (2.7 ± 0.6 vs. 0.7 ± 0.2 mM x min, p < 0.01, n = 8) with total unconjugated BAs being 2-3-fold higher than total conjugated BAs (AUC 8-10 higher p < 0.05 for both). However, in both cases, absolute ratios varied greatly among different BAs. The average hepatic reuptake of BAs agonistic for FXR/TGR5 was similar to non-agonists. However, as the sum of non-agonist BAs in vena portae was 2-3-fold higher than the sum agonist (p < 0.05), the peripheral BA pool was composed mostly of non-agonist BAs. We conclude that hepatic BA reuptake varies substantially by type and does not favor FXR/TGR5 BAs agonists.


Assuntos
Ácidos e Sais Biliares/metabolismo , Fígado/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Acoplados a Proteínas G/genética , Animais , Ácidos e Sais Biliares/agonistas , Ácidos e Sais Biliares/genética , Colecistocinina/farmacologia , Intestinos/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Ratos
15.
Int J Obes (Lond) ; 44(9): 1872-1883, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32317753

RESUMO

BACKGROUND/OBJECTIVES: Bile acids in plasma are elevated after bariatric surgery and may contribute to metabolic improvements, but underlying changes in bile flow are poorly understood. We assessed bilio-enteric flow of bile and plasma bile concentrations in individuals with Roux-en-Y gastric bypass (RYGB) or sleeve gastrectomy (SG) surgery compared with matched non-surgical controls (CON). SUBJECTS/METHODS: Fifteen RYGB, 10 SG and 15 CON underwent 99Tc-mebrofenin cholescintigraphy combined with intake of a high-fat 111In-DTPA-labelled meal and frequent blood sampling. A 75Se-HCAT test was used to assess bile acid retention. RESULTS: After RYGB, gallbladder filling was decreased (p = 0.045 versus CON), basal flow of bile into the small intestine increased (p = 0.005), bile acid retention augmented (p = 0.021) and basal bile acid plasma concentrations elevated (p = 0.009). During the meal, foods passed unimpeded through the gastric pouch resulting in almost instant postprandial mixing of bile and foods, but the postprandial rise in plasma bile acids was brief and associated with decreased overall release of fibroblast growth factor-19 (FGF-19) compared with CON (p = 0.033). After SG, bile flow and retention were largely unaltered (p > 0.05 versus CON), but gastric emptying was accelerated (p < 0.001) causing earlier mixture of bile and foods also in this group. Neither basal nor postprandial bile acid concentrations differed between SG and CON. CONCLUSIONS: Bilio-enteric bile flow is markedly altered after RYGB resulting in changes in plasma concentrations of bile acids and FGF-19, whereas bile flow and plasma concentrations are largely unaltered after SG.


Assuntos
Ácidos e Sais Biliares/sangue , Ácidos e Sais Biliares/metabolismo , Gastrectomia/estatística & dados numéricos , Derivação Gástrica/estatística & dados numéricos , Adulto , Ductos Biliares/metabolismo , Feminino , Fatores de Crescimento de Fibroblastos/sangue , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade Mórbida/cirurgia , Período Pós-Prandial/fisiologia
16.
Acta Physiol (Oxf) ; 228(4): e13437, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31900990

RESUMO

AIM: Neurons in the arcuate nucleus of the hypothalamus are involved in regulation of food intake and energy expenditure, and dysregulation of signalling in these neurons promotes development of obesity. The role of the rate-limiting enzyme in the NAD+ salvage pathway, nicotinamide phosphoribosyltransferase (NAMPT), for regulation energy homeostasis by the hypothalamus has not been extensively studied. METHODS: We determined whether Nampt mRNA or protein levels in the hypothalamus of mice were affected by diet-induced obesity, by fasting and re-feeding, and by leptin and ghrelin treatment. Primary hypothalamic neurons were treated with FK866, a selective inhibitor of NAMPT, or rAAV carrying shRNA directed against Nampt, and levels of reactive oxygen species (ROS) and mitochondrial respiration were assessed. Fasting and ghrelin-induced food intake was measured in mice in metabolic cages after intracerebroventricular (ICV)-mediated FK866 administration. RESULTS: NAMPT levels in the hypothalamus were elevated by administration of ghrelin and leptin. In diet-induced obese mice, both protein and mRNA levels of NAMPT decreased in the hypothalamus. NAMPT inhibition in primary hypothalamic neurons significantly reduced levels of NAD+ , increased levels of ROS, and affected the expression of Agrp, Pomc and genes related to mitochondrial function. Finally, ICV-induced NAMPT inhibition by FK866 did not cause malaise or anhedonia, but completely ablated fasting- and ghrelin-induced increases in food intake. CONCLUSION: Our findings indicate that regulation of NAMPT levels in hypothalamic neurons is important for the control of fasting- and ghrelin-induced food intake.


Assuntos
Jejum/metabolismo , Grelina/metabolismo , Hipotálamo/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Acrilamidas/administração & dosagem , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Animais , Linhagem Celular , Ingestão de Alimentos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Piperidinas/administração & dosagem , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo
17.
Proc Natl Acad Sci U S A ; 116(49): 24770-24778, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31740614

RESUMO

Fatty acid amide hydrolase (FAAH) degrades 2 major classes of bioactive fatty acid amides, the N-acylethanolamines (NAEs) and N-acyl taurines (NATs), in central and peripheral tissues. A functional polymorphism in the human FAAH gene is linked to obesity and mice lacking FAAH show altered metabolic states, but whether these phenotypes are caused by elevations in NAEs or NATs is unknown. To overcome the problem of concurrent elevation of NAEs and NATs caused by genetic or pharmacological disruption of FAAH in vivo, we developed an engineered mouse model harboring a single-amino acid substitution in FAAH (S268D) that selectively disrupts NAT, but not NAE, hydrolytic activity. The FAAH-S268D mice accordingly show substantial elevations in NATs without alterations in NAE content, a unique metabolic profile that correlates with heightened insulin sensitivity and GLP-1 secretion. We also show that N-oleoyl taurine (C18:1 NAT), the most abundant NAT in human plasma, decreases food intake, improves glucose tolerance, and stimulates GPR119-dependent GLP-1 and glucagon secretion in mice. Together, these data suggest that NATs act as a class of lipid messengers that improve postprandial glucose regulation and may have potential as investigational metabolites to modify metabolic disease.


Assuntos
Amidoidrolases/genética , Glicemia/metabolismo , Síndrome Metabólica/metabolismo , Ácidos Oleicos/metabolismo , Taurina/análogos & derivados , Amidoidrolases/metabolismo , Substituição de Aminoácidos , Animais , Glicemia/análise , Modelos Animais de Doenças , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Etanolaminas/sangue , Etanolaminas/metabolismo , Feminino , Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Teste de Tolerância a Glucose , Humanos , Injeções Intravenosas , Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , Síndrome Metabólica/sangue , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/genética , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Ácidos Oleicos/administração & dosagem , Ácidos Oleicos/sangue , Período Pós-Prandial/efeitos dos fármacos , Período Pós-Prandial/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Taurina/administração & dosagem , Taurina/sangue , Taurina/metabolismo
18.
J Clin Endocrinol Metab ; 104(11): 5703-5714, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31390002

RESUMO

OBJECTIVE: Augmenting nicotinamide adenine dinucleotide (NAD+) metabolism through dietary provision of NAD+ precursor vitamins translates to improved glucose handling in rodent models of obesity and diabetes. Preclinical evidence suggests that the NAD+/SIRT1 axis may be implicated in modulating important gut-related aspects of glucose regulation. We sought to test whether NAD+ precursor supplementation with nicotinamide riboside (NR) affects ß-cell function, α-cell function, and incretin hormone secretion as well as circulating bile acid levels in humans. DESIGN: A 12-week randomized, double-blind, placebo-controlled, parallel-group trial in 40 males with obesity and insulin resistance allocated to NR at 1000 mg twice daily (n = 20) or placebo (n = 20). Two-hour 75-g oral glucose tolerance tests were performed before and after the intervention, and plasma concentrations of glucose, insulin, C-peptide, glucagon, glucagon-like peptide 1 (GLP-1), and glucose-dependent insulinotropic polypeptide (GIP) were determined. ß-Cell function indices were calculated based on glucose, insulin, and C-peptide measurements. Fasting plasma concentrations of bile acids were determined. RESULTS: NR supplementation during 12 weeks did not affect fasting or postglucose challenge concentrations of glucose, insulin, C-peptide, glucagon, GLP-1, or GIP, and ß-cell function did not respond to the intervention. Additionally, no changes in circulating adipsin or bile acids were observed following NR supplementation. CONCLUSION: The current study does not provide evidence to support that dietary supplementation with the NAD+ precursor NR serves to impact glucose tolerance, ß-cell secretory capacity, α-cell function, and incretin hormone secretion in nondiabetic males with obesity. Moreover, bile acid levels in plasma did not change in response to NR supplementation.


Assuntos
Glicemia , Polipeptídeo Inibidor Gástrico/sangue , Peptídeo 1 Semelhante ao Glucagon/sangue , Glucagon/sangue , Ilhotas Pancreáticas/efeitos dos fármacos , Niacinamida/análogos & derivados , Obesidade/sangue , Peptídeo C/sangue , Método Duplo-Cego , Teste de Tolerância a Glucose , Humanos , Insulina/sangue , Ilhotas Pancreáticas/fisiopatologia , Masculino , Pessoa de Meia-Idade , Niacinamida/farmacologia , Obesidade/fisiopatologia , Compostos de Piridínio
19.
J Biol Chem ; 294(36): 13304-13326, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31320478

RESUMO

Supplementation with NAD precursors such as nicotinamide riboside (NR) has been shown to enhance mitochondrial function in the liver and to prevent hepatic lipid accumulation in high-fat diet (HFD)-fed rodents. Hepatocyte-specific knockout of the NAD+-synthesizing enzyme nicotinamide phosphoribosyltransferase (NAMPT) reduces liver NAD+ levels, but the metabolic phenotype of Nampt-deficient hepatocytes in mice is unknown. Here, we assessed Nampt's role in maintaining mitochondrial and metabolic functions in the mouse liver. Using the Cre-LoxP system, we generated hepatocyte-specific Nampt knockout (HNKO) mice, having a 50% reduction of liver NAD+ levels. We screened the HNKO mice for signs of metabolic dysfunction following 60% HFD feeding for 20 weeks ± NR supplementation and found that NR increases hepatic NAD+ levels without affecting fat mass or glucose tolerance in HNKO or WT animals. High-resolution respirometry revealed that NR supplementation of the HNKO mice did not increase state III respiration, which was observed in WT mice following NR supplementation. Mitochondrial oxygen consumption and fatty-acid oxidation were unaltered in primary HNKO hepatocytes. Mitochondria isolated from whole-HNKO livers had only a 20% reduction in NAD+, suggesting that the mitochondrial NAD+ pool is less affected by HNKO than the whole-tissue pool. When stimulated with tryptophan in the presence of [15N]glutamine, HNKO hepatocytes had a higher [15N]NAD+ enrichment than WT hepatocytes, indicating that HNKO mice compensate through de novo NAD+ synthesis. We conclude that NAMPT-deficient hepatocytes can maintain substantial NAD+ levels and that the Nampt knockout has only minor consequences for mitochondrial function in the mouse liver.


Assuntos
Hepatócitos/metabolismo , Mitocôndrias/metabolismo , NAD/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Tumorais Cultivadas
20.
Biochem Soc Trans ; 47(1): 131-147, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30559273

RESUMO

The functional cofactors derived from vitamin B3 are nicotinamide adenine dinucleotide (NAD+), its phosphorylated form, nicotinamide adenine dinucleotide phosphate (NADP+) and their reduced forms (NAD(P)H). These cofactors, together referred as the NAD(P)(H) pool, are intimately implicated in all essential bioenergetics, anabolic and catabolic pathways in all forms of life. This pool also contributes to post-translational protein modifications and second messenger generation. Since NAD+ seats at the cross-road between cell metabolism and cell signaling, manipulation of NAD+ bioavailability through vitamin B3 supplementation has become a valuable nutritional and therapeutic avenue. Yet, much remains unexplored regarding vitamin B3 metabolism. The present review highlights the chemical diversity of the vitamin B3-derived anabolites and catabolites of NAD+ and offers a chemical perspective on the approaches adopted to identify, modulate and measure the contribution of various precursors to the NAD(P)(H) pool.


Assuntos
Metaboloma/fisiologia , Niacinamida/metabolismo , Animais , Humanos , Metaboloma/genética , Processamento de Proteína Pós-Traducional/genética , Processamento de Proteína Pós-Traducional/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA