Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Exp Neurol ; 379: 114889, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019303

RESUMO

Neuroscience dogma avers that astrocytic "scars" inhibit axonal regeneration after spinal cord injury (SCI). A recent report suggested however that astrocytes form "borders" around lesions that are permissive rather than inhibitory to axonal growth. We now provide further evidence supporting a facilitatory role of astrocytes in axonal regeneration after SCI. First, even 6months after SCI, injured axons are retained within regions of densely reactive astrocytes, in direct contact with astrocyte processes without being repelled. Second, 6 month-delayed implants of neural stem cells extend axons into reactive astrocyte borders surrounding lesions, densely contacting astrocyte surfaces. Third, bioengineered hydrogels implanted into sites of SCI re-orient reactive astrocytic processes to align along the rostral-to-caudal spinal cord axis resulting in successful regeneration into the lesion/scaffold in close association with astrocytic processes. Fourth, corticospinal axons regenerate into neural progenitor cells implanted six months after injury in close association with host astrocytic processes. Thus, astrocytes do not appear to inhibit axonal regeneration, and the close association of newly growing axons with astrocytic processes suggests a facilitatory role in axonal regeneration.

2.
J Diabetes Metab Disord ; 23(1): 385-394, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38932889

RESUMO

Purpose: Metformin has been the first-line treatment for type 2 diabetes mellitus as monotherapy or concomitantly with other glucose-lowering therapies due to its efficacy, safety, and affordability. Recent studies on the cardioprotective and renoprotective benefits of glucagon-like peptide-1 receptor agonists (GLP-1 RA) and sodium-glucose cotransporter-2 inhibitors (SGLT-2i) have influenced guidelines on diabetes management to consider these newer agents as alternative first-line therapies. This paper explores the literature supporting the use of these newer medications alone as a first-line agent in place of metformin. Methods: A review of citations from the most recent guidelines along with a literature search via PubMed was completed to review (1) what, historically, made metformin first-line (2) if newer agents' benefits remain when used without metformin (3) how newer agents compare against metformin when used without it. Results: Evaluation of the historical literature was completed to summarize the key findings that support metformin as a first-line therapy agent. Additionally, an assessment of the literature reveals that the benefits of these two newer classes are independent of concomitant metformin therapy. Finally, studies have demonstrated that these newer agents can be either non-inferior or sometimes superior to metformin when used as monotherapy. Conclusion: GLP-1 RA and SGLT-2i can be considered as first line monotherapies for select patients with high cardiovascular risks, renal disease, or weight loss requirements. However, pharmacoeconomic considerations along with lesser long-term safety outcomes should limit these agents' use in certain patients as the management of diabetes continues to transition towards shared-decision making. Supplementary Information: The online version contains supplementary material available at 10.1007/s40200-024-01406-6.

3.
JMIR Form Res ; 8: e56218, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801768

RESUMO

BACKGROUND: Sequential mixed-mode surveys using both web-based surveys and telephone interviews are increasingly being used in observational studies and have been shown to have many benefits; however, the application of this survey design has not been evaluated in the context of epidemiological case-control studies. OBJECTIVE: In this paper, we discuss the challenges, benefits, and limitations of using a sequential mixed-mode survey design for a case-control study assessing risk factors during the COVID-19 pandemic. METHODS: Colorado adults testing positive for SARS-CoV-2 were randomly selected and matched to those with a negative SARS-CoV-2 test result from March to April 2021. Participants were first contacted by SMS text message to complete a self-administered web-based survey asking about community exposures and behaviors. Those who did not respond were contacted for a telephone interview. We evaluated the representativeness of survey participants to sample populations and compared sociodemographic characteristics, participant responses, and time and resource requirements by survey mode using descriptive statistics and logistic regression models. RESULTS: Of enrolled case and control participants, most were interviewed by telephone (308/537, 57.4% and 342/648, 52.8%, respectively), with overall enrollment more than doubling after interviewers called nonresponders. Participants identifying as female or White non-Hispanic, residing in urban areas, and not working outside the home were more likely to complete the web-based survey. Telephone participants were more likely than web-based participants to be aged 18-39 years or 60 years and older and reside in areas with lower levels of education, more linguistic isolation, lower income, and more people of color. While there were statistically significant sociodemographic differences noted between web-based and telephone case and control participants and their respective sample pools, participants were more similar to sample pools when web-based and telephone responses were combined. Web-based participants were less likely to report close contact with an individual with COVID-19 (odds ratio [OR] 0.70, 95% CI 0.53-0.94) but more likely to report community exposures, including visiting a grocery store or retail shop (OR 1.55, 95% CI 1.13-2.12), restaurant or cafe or coffee shop (OR 1.52, 95% CI 1.20-1.92), attending a gathering (OR 1.69, 95% CI 1.34-2.15), or sport or sporting event (OR 1.05, 95% CI 1.05-1.88). The web-based survey required an average of 0.03 (SD 0) person-hours per enrolled participant and US $920 in resources, whereas the telephone interview required an average of 5.11 person-hours per enrolled participant and US $70,000 in interviewer wages. CONCLUSIONS: While we still encountered control recruitment challenges noted in other observational studies, the sequential mixed-mode design was an efficient method for recruiting a more representative group of participants for a case-control study with limited impact on data quality and should be considered during public health emergencies when timely and accurate exposure information is needed to inform control measures.

4.
J Nurs Adm ; 53(11): 567-573, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37824454

RESUMO

Nurse well-being and optimism were tested in the midst of COVID-19 patient surges and staffing challenges. Using the American Nurses Foundation Gratitude Toolkit, a health system implemented monthly gratitude practices at 4 hospitals. Validated survey measures indicated that nurses' scores of self-perceived gratitude, flourishing behaviors, and mindfulness were maintained during this challenging time but did not statistically increase. Although statistical significance increases were not demonstrated, the gratitude campaign offered clinical significance through positive feedback and was sustained through the distribution of a toolkit disseminated across the health system.


Assuntos
Atenção Plena , Enfermeiras e Enfermeiros , Bem-Estar Psicológico , Humanos , Enfermeiras e Enfermeiros/psicologia , COVID-19
5.
J Biol Rhythms ; 38(5): 447-460, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37515350

RESUMO

The cyanobacterial circadian oscillator, consisting of KaiA, KaiB, and KaiC proteins, drives global rhythms of gene expression and compaction of the chromosome and regulates the timing of cell division and natural transformation. While the KaiABC posttranslational oscillator can be reconstituted in vitro, the Kai-based oscillator is subject to several layers of regulation in vivo. Specifically, the oscillator proteins undergo changes in their subcellular localization patterns, where KaiA and KaiC are diffuse throughout the cell during the day and localized as a focus at or near the pole of the cell at night. Here, we report that the CI domain of KaiC, when in a hexameric state, is sufficient to target KaiC to the pole. Moreover, increased ATPase activity of KaiC correlates with enhanced polar localization. We identified proteins associated with KaiC in either a localized or diffuse state. We found that loss of Rbp2, found to be associated with localized KaiC, results in decreased incidence of KaiC localization and long-period circadian phenotypes. Rbp2 is an RNA-binding protein, and it appears that RNA-binding activity of Rbp2 is required to execute clock functions. These findings uncover previously unrecognized roles for Rbp2 in regulating the circadian clock and suggest that the proper localization of KaiC is required for a fully functional clock in vivo.


Assuntos
Relógios Circadianos , Synechococcus , Relógios Circadianos/genética , Ritmo Circadiano/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano , Synechococcus/genética , Fosforilação
6.
PLoS One ; 18(3): e0282422, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36862756

RESUMO

OBJECTIVES: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which causes coronavirus disease 2019 (COVID-19), is spread primarily through exposure to respiratory droplets from close contact with an infected person. To inform prevention measures, we conducted a case-control study among Colorado adults to assess the risk of SARS-CoV-2 infection from community exposures. METHODS: Cases were symptomatic Colorado adults (aged ≥18 years) with a positive SARS-CoV-2 test by reverse transcription-polymerase chain reaction (RT-PCR) reported to Colorado's COVID-19 surveillance system. From March 16 to December 23, 2021, cases were randomly selected from surveillance data ≤12 days after their specimen collection date. Cases were matched on age, zip code (urban areas) or region (rural/frontier areas), and specimen collection date with controls randomly selected among persons with a reported negative SARS-CoV-2 test result. Data on close contact and community exposures were obtained from surveillance and a survey administered online. RESULTS: The most common exposure locations among all cases and controls were place of employment, social events, or gatherings and the most frequently reported exposure relationship was co-worker or friend. Cases were more likely than controls to work outside the home (adjusted odds ratio (aOR) 1.18, 95% confidence interval (CI): 1.09-1.28) in industries and occupations related to accommodation and food services, retail sales, and construction. Cases were also more likely than controls to report contact with a non-household member with confirmed or suspected COVID-19 (aOR 1.16, 95% CI: 1.06-1.27). CONCLUSIONS: Understanding the settings and activities associated with a higher risk of SARS-CoV-2 infection is essential for informing prevention measures aimed at reducing the transmission of SARS-CoV-2 and other respiratory diseases. These findings emphasize the risk of community exposure to infected persons and the need for workplace precautions in preventing ongoing transmission.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Humanos , Adolescente , COVID-19/diagnóstico , COVID-19/epidemiologia , Estudos de Casos e Controles , Colorado/epidemiologia , Acomodação Ocular
7.
Exp Neurol ; 359: 114259, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36309123

RESUMO

Neural stem cells (NSCs) implanted into sites of spinal cord injury (SCI) extend very large numbers of new axons over very long distances caudal to the lesion site, and support partial functional recovery. Newly extending graft axons distribute throughout host gray and white matter caudal to the injury. We hypothesized that provision of trophic gradients caudal to the injury would provide neurotrophic guidance to newly extending graft-derived axons to specific intermediate and ventral host gray matter regions, thereby potentially further improving neural relay formation. Immunodeficient rats underwent C5 lateral hemisection lesions, following by implants of human NSC grafts two weeks later. After an additional two weeks, animals received injections of AAV2-BDNF expressing vectors three spinal segments (9 mm) caudal to the lesion in host ventral and intermediate gray matter. After 2 months additional survival, we found a striking, 5.5-fold increase in the density of human axons innervating host ventral gray matter (P < 0.05) and 2.7-fold increase in intermediate gray matter (P < 0.01). Moreover, stem cell-derived axons formed a substantially greater number of putative synaptic connections with host motor neurons (P < 0.01). Thus, trophic guidance is an effective means of enhancing and guiding neural stem cell axon growth after SCI and will be used in future experiments to determine whether neural relay formation and functional outcomes can be improved.


Assuntos
Células-Tronco Neurais , Traumatismos da Medula Espinal , Ratos , Humanos , Animais , Fator Neurotrófico Derivado do Encéfalo , Axônios/patologia , Células-Tronco Neurais/transplante , Neurônios Motores/patologia , Interneurônios/patologia , Medula Espinal/patologia , Regeneração Nervosa/fisiologia
8.
J Biol Chem ; 298(11): 102512, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36259517

RESUMO

Filopodia are long finger-like actin-based structures that project out from the plasma membrane as cells navigate and explore their extracellular environment. The initiation of filopodia formation requires release of tension at the plasma membrane followed by the coordinated assembly of long unbranched actin filaments. Filopodia growth is maintained by a tip complex that promotes actin polymerization and protects the growing barbed ends of the actin fibers from capping proteins. Filopodia growth also depends on additional F-actin bundling proteins to stiffen the actin filaments as well as extension of the membrane sheath projecting from the cell periphery. These activities can be provided by a number of actin-binding and membrane-binding proteins including formins such as formin-like 2 (FMNL2) and FMNL3, and Inverse-Bin-Amphiphysin-Rvs (I-BAR) proteins such as IRTKS and IRSp53, but the specific requirement for these proteins in filopodia assembly is not clear. We report here that IRTKS and IRSp53 are FMNL2-binding proteins. Coexpression of FMNL2 with either I-BAR protein promotes cooperative filopodia assembly. We find IRTKS, but not IRSp53, is required for FMNL2-induced filopodia assembly, and FMNL2 and IRTKS are mutually dependent cofactors in this process. Our results suggest that the primary function for FMNL2 during filopodia assembly is binding to the plasma membrane and that regulation of actin dynamics by its formin homology 2 domain is secondary. From these results, we conclude that FMNL2 initiates filopodia assembly via an unexpected novel mechanism, by bending the plasma membrane to recruit IRTKS and thereby nucleate filopodia assembly.


Assuntos
Actinas , Pseudópodes , Pseudópodes/metabolismo , Forminas , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas de Transporte/metabolismo
9.
JCI Insight ; 7(16)2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35993363

RESUMO

We reported previously that neural progenitor cell (NPC) grafts form neural relays across sites of subacute spinal cord injury (SCI) and support functional recovery. Here, we examine whether NPC grafts after chronic delays also support recovery and whether intensive rehabilitation further enhances recovery. One month after severe bilateral cervical contusion, rats received daily intensive rehabilitation, NPC grafts, or both rehabilitation and grafts. Notably, only the combination of rehabilitation and grafting significantly improved functional recovery. Moreover, improved functional outcomes were associated with a rehabilitation-induced increase in host corticospinal axon regeneration into grafts. These findings identify a critical and synergistic role of rehabilitation and neural stem cell therapy in driving neural plasticity to support functional recovery after chronic and severe SCI.


Assuntos
Células-Tronco Neurais , Traumatismos da Medula Espinal , Animais , Axônios , Regeneração Nervosa , Ratos , Traumatismos da Medula Espinal/terapia , Transplante de Células-Tronco
10.
Foodborne Pathog Dis ; 19(4): 290-292, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35020464

RESUMO

The rate of enteric infections reported to public health surveillance decreased during 2020 amid the coronavirus disease 2019 (COVID-19) pandemic. Changes in medical care-seeking behaviors may have impacted the diagnosis of enteric infections contributing to these declines. We examined trends in outpatient medical care-seeking behavior for acute gastroenteritis (AGE) in Colorado during 2020 compared with the that of previous 3 years using electronic health record data from the Colorado Health Observation Regional Data Service (CHORDS). Outpatient medical encounters for AGE were identified using diagnoses codes from the International Classification of Diseases 10th Revision and aggregated by year, quarter, age group, and encounter type. The rate of encounters was calculated by dividing the number of AGE encounters by the corresponding total number of encounters. There were 9064 AGE encounters in 2020 compared with an annual average of 18,784 from 2017 to 2019 (p < 0.01), representing a 52% decrease. The rate of AGE encounters declined after the first quarter of 2020 and remained significantly lower for the rest of the year. Moreover, previously observed trends, including seasonal patterns and the preponderance of pediatric encounters, were no longer evident. Telemedicine modalities accounted for 23% of all AGE encounters in 2020. AGE outpatient encounters in Colorado in 2020 were substantially lower than during the previous 3 years. Decreases remained stable over the second, third, and fourth quarters of 2020 (April-December) and were especially pronounced for children <18 years of age. Changes in medical care-seeking behavior likely contributed to declines in the number of enteric disease cases and outbreaks reported to public health. It is unclear to what extent people were ill with AGE and did not seek medical care because of concerns about the infection risk during a health care visit or to what extent there were reductions in certain exposures and opportunities for disease transmission resulting in less illness.


Assuntos
COVID-19 , Gastroenterite , COVID-19/epidemiologia , Criança , Pré-Escolar , Colorado/epidemiologia , Gastroenterite/epidemiologia , Gastroenterite/terapia , Humanos , Pacientes Ambulatoriais , Pandemias
11.
Cell Tissue Res ; 387(3): 319-336, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34076775

RESUMO

Severe spinal cord injury causes permanent loss of function and sensation throughout the body. The trauma causes a multifaceted torrent of pathophysiological processes which ultimately act to form a complex structure, permanently remodeling the cellular architecture and extracellular matrix. This structure is traditionally termed the glial/fibrotic scar. Similar cellular formations occur following stroke, infection, and neurodegenerative diseases of the central nervous system (CNS) signifying their fundamental importance to preservation of function. It is increasingly recognized that the scar performs multiple roles affecting recovery following traumatic injury. Innovative research into the properties of this structure is imperative to the development of treatment strategies to recover motor function and sensation following CNS trauma. In this review, we summarize how the regeneration potential of the CNS alters across phyla and age through formation of scar-like structures. We describe how new insights from next-generation sequencing technologies have yielded a more complex portrait of the molecular mechanisms governing the astrocyte, microglial, and neuronal responses to injury and development, especially of the glial component of the scar. Finally, we discuss possible combinatorial therapeutic approaches centering on scar modulation to restore function after severe CNS injury.


Assuntos
Gliose , Traumatismos da Medula Espinal , Astrócitos/patologia , Cicatriz/patologia , Gliose/patologia , Humanos , Neuroglia/patologia , Medula Espinal/patologia , Traumatismos da Medula Espinal/tratamento farmacológico
12.
Dev Med Child Neurol ; 63(12): 1410-1416, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34109620

RESUMO

AIM: To examine parental concerns about children at increased familial risk (i.e. high risk) of developing autism spectrum disorder (ASD) in early infancy. METHOD: ASD-related and general parental concerns were prospectively collected for 76 infants at ages 1.5, 3, 6, 9, 12, and 18 months. Outcome classification was determined at 36 months. Analyses included generalized linear mixed models and qualitative evaluation of parental concerns in relation to risk status (high vs low risk) and outcome classification within the high-risk group (atypically developing vs typically developing) over time. RESULTS: Most parents had no concerns at 1.5 (high risk 71%, low risk 87%) and 3 months (high risk 77%, low risk 86%). Beginning at 6 months, parents of high-risk infants reported more ASD-related (p<0.001) and general concerns (p=0.003) than parents of low-risk infants. Beginning at 12 months, parents of high-risk atypically developing infants reported more ASD-related concerns than parents of high-risk typically developing infants (p=0.013). INTERPRETATION: Clinicians should elicit parental concerns and provide support, as parents are worried about their high-risk infants by age 6 months. Additionally, parents' abilities to identify concerns that are suggestive of ASD by age 12 months may aid in earlier screening and intervention. What this paper adds Most parents did not report concerns during early infancy. By 6 months, parents of high-risk infants reported autism spectrum disorder (ASD)-related and general concerns. By 12 months, parents of high-risk atypically developing infants identified ASD-related concerns.


Assuntos
Ansiedade/psicologia , Transtorno do Espectro Autista/diagnóstico , Pais/psicologia , Fatores Etários , Transtorno do Espectro Autista/psicologia , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Estudos Prospectivos , Fatores de Risco
13.
Nat Neurosci ; 24(4): 504-515, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33723433

RESUMO

The basal ganglia regulate a wide range of behaviors, including motor control and cognitive functions, and are profoundly affected in Parkinson's disease (PD). However, the functional organization of different basal ganglia nuclei has not been fully elucidated at the circuit level. In this study, we investigated the functional roles of distinct parvalbumin-expressing neuronal populations in the external globus pallidus (GPe-PV) and their contributions to different PD-related behaviors. We demonstrate that substantia nigra pars reticulata (SNr)-projecting GPe-PV neurons and parafascicular thalamus (PF)-projecting GPe-PV neurons are associated with locomotion and reversal learning, respectively. In a mouse model of PD, we found that selective manipulation of the SNr-projecting GPe-PV neurons alleviated locomotor deficit, whereas manipulation of the PF-projecting GPe-PV neurons rescued the impaired reversal learning. Our findings establish the behavioral importance of two distinct GPe-PV neuronal populations and, thereby, provide a new framework for understanding the circuit basis of different behavioral deficits in the Parkinsonian state.


Assuntos
Globo Pálido/fisiopatologia , Vias Neurais/fisiopatologia , Neurônios/fisiologia , Transtornos Parkinsonianos/fisiopatologia , Animais , Feminino , Transtornos Neurológicos da Marcha/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Parvalbuminas , Reversão de Aprendizagem/fisiologia
14.
Neural Regen Res ; 16(1): 26-35, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32788444

RESUMO

Proteases comprise a variety of enzymes defined by their ability to catalytically hydrolyze the peptide bonds of other proteins, resulting in protein lysis. Cathepsins, specifically, encompass a class of at least twenty proteases with potent endopeptidase activity. They are located subcellularly in lysosomes, organelles responsible for the cell's degradative and autophagic processes, and are vital for normal lysosomal function. Although cathepsins are involved in a multitude of cell signaling activities, this chapter will focus on the role of cathepsins (with a special emphasis on Cathepsin B) in neuronal plasticity. We will broadly define what is known about regulation of cathepsins in the central nervous system and compare this with their dysregulation after injury or disease. Importantly, we will delineate what is currently known about the role of cathepsins in axon regeneration and plasticity after spinal cord injury. It is well established that normal cathepsin activity is integral to the function of lysosomes. Without normal lysosomal function, autophagy and other homeostatic cellular processes become dysregulated resulting in axon dystrophy. Furthermore, controlled activation of cathepsins at specialized neuronal structures such as axonal growth cones and dendritic spines have been positively implicated in their plasticity. This chapter will end with a perspective on the consequences of cathepsin dysregulation versus controlled, localized regulation to clarify how cathepsins can contribute to both neuronal plasticity and neurodegeneration.

15.
Nat Commun ; 11(1): 4055, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792504

RESUMO

Although metastasis is the most common cause of cancer deaths, metastasis-intrinsic dependencies remain largely uncharacterized. We previously reported that metastatic pancreatic cancers were dependent on the glucose-metabolizing enzyme phosphogluconate dehydrogenase (PGD). Surprisingly, PGD catalysis was constitutively elevated without activating mutations, suggesting a non-genetic basis for enhanced activity. Here we report a metabolic adaptation that stably activates PGD to reprogram metastatic chromatin. High PGD catalysis prevents transcriptional up-regulation of thioredoxin-interacting protein (TXNIP), a gene that negatively regulates glucose import. This allows glucose consumption rates to rise in support of PGD, while simultaneously facilitating epigenetic reprogramming through a glucose-fueled histone hyperacetylation pathway. Restoring TXNIP normalizes glucose consumption, lowers PGD catalysis, reverses hyperacetylation, represses malignant transcripts, and impairs metastatic tumorigenesis. We propose that PGD-driven suppression of TXNIP allows pancreatic cancers to avidly consume glucose. This renders PGD constitutively activated and enables metaboloepigenetic selection of additional traits that increase fitness along glucose-replete metastatic routes.


Assuntos
Cromatina/metabolismo , Glucose/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Animais , Transporte Biológico/genética , Transporte Biológico/fisiologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Reprogramação Celular/genética , Reprogramação Celular/fisiologia , Imunoprecipitação da Cromatina , Epigênese Genética/genética , Camundongos , Camundongos Nus , Neoplasias Pancreáticas/genética , Fosfogluconato Desidrogenase/genética , Fosfogluconato Desidrogenase/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
16.
Exp Neurol ; 328: 113276, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32145250

RESUMO

Chondroitin sulfate proteoglycans (CSPGs), extracellular matrix molecules that increase dramatically following a variety of CNS injuries or diseases, have long been known for their potent capacity to curtail cell migrations as well as axon regeneration and sprouting. The inhibition can be conferred through binding to their major cognate receptor, Protein Tyrosine Phosphatase Sigma (PTPσ). However, the precise mechanisms downstream of receptor binding that mediate growth inhibition have remained elusive. Recently, CSPGs/PTPσ interactions were found to regulate autophagic flux at the axon growth cone by dampening the autophagosome-lysosomal fusion step. Because of the intense interest in autophagic phenomena in the regulation of a wide variety of critical cellular functions, we summarize here what is currently known about dysregulation of autophagy following spinal cord injury, and highlight this critical new mechanism underlying axon regeneration failure. Furthermore, we review how CSPGs/PTPσ interactions influence plasticity through autophagic regulation and how PTPσ serves as a switch to execute either axon outgrowth or synaptogenesis. This has exciting implications for the role CSPGs play not only in axon regeneration failure after spinal cord injury, but also in neurodegenerative diseases where, again, inhibitory CSPGs are upregulated.


Assuntos
Proteoglicanas de Sulfatos de Condroitina/metabolismo , Regeneração Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Traumatismos da Medula Espinal/metabolismo , Animais , Autofagia/fisiologia , Humanos , Traumatismos da Medula Espinal/patologia
17.
Nat Commun ; 9(1): 4126, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297691

RESUMO

Multiple Sclerosis (MS) is characterized by focal CNS inflammation leading to the death of oligodendrocytes (OLs) with subsequent demyelination, neuronal degeneration, and severe functional deficits. Inhibitory chondroitin sulfate proteoglycans (CSPGs) are increased in the extracellular matrix in the vicinity of MS lesions and are thought to play a critical role in myelin regeneration failure. We here show that CSPGs curtail remyelination through binding with their cognate receptor, protein tyrosine phosphatase σ (PTPσ) on oligodendrocyte progenitor cells (OPCs). We report that inhibition of CSPG/PTPσ signaling by systemically deliverable Intracellular Sigma Peptide (ISP), promotes OPC migration, maturation, remyelination, and functional recovery in animal models of MS. Furthermore, we report a downstream molecular target of PTPσ modulation in OPCs involving upregulation of the protease MMP-2 that allows OPCs to enzymatically digest their way through CSPGs. In total, we demonstrate a critical role of PTPσ/CSPG interactions in OPC remyelination in MS.


Assuntos
Proteoglicanas de Sulfatos de Condroitina/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Esclerose Múltipla/metabolismo , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Encefalomielite Autoimune Experimental/prevenção & controle , Humanos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/prevenção & controle , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Peptídeos/farmacologia , Ligação Proteica/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
19.
Oncogene ; 37(38): 5248-5256, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29849117

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) adopts several unique metabolic strategies to support primary tumor growth. Whether additional metabolic strategies are adopted to support metastatic tumorigenesis is less clear. This could be particularly relevant for distant metastasis, which often follows a rapidly progressive clinical course. Here we report that PDAC distant metastases evolve a unique series of metabolic reactions to maintain activation of the anabolic glucose enzyme phosphogluconate dehydrogenase (PGD). PGD catalytic activity was recurrently elevated across distant metastases, and modulating PGD activity levels dictated tumorigenic capacity. Metabolomics data raised the possibility that distant metastases evolved a core pentose conversion pathway (PCP) that converted glucose-derived metabolites into PGD substrate, thereby hyperactivating the enzyme. Consistent with this, each individual metabolite in the PCP stimulated PGD catalysis in distant metastases, and knockdown of each individual PCP enzyme selectively impaired tumorigenesis. We propose that the PCP manufactures PGD substrate outside of the rate-limiting oxidative pentose phosphate pathway (oxPPP). This enables PGD-dependent tumorigenesis by providing adequate substrate to fuel high catalytic activity, and raises the possibility that PDAC distant metastases adopt their own unique metabolic strategies to support tumor growth.


Assuntos
Carcinogênese , Neoplasias Pancreáticas/patologia , Via de Pentose Fosfato , Linhagem Celular Tumoral , Humanos , Metástase Neoplásica , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas
20.
J Neurosci ; 38(23): 5399-5414, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29760175

RESUMO

Severed axon tips reform growth cones following spinal cord injury that fail to regenerate, in part, because they become embedded within an inhibitory extracellular matrix. Chondroitin sulfate proteoglycans (CSPGs) are the major axon inhibitory matrix component that is increased within the lesion scar and in perineuronal nets around deafferented neurons. We have recently developed a novel peptide modulator (intracellular sigma peptide) of the cognate receptor of CSPGs, protein tyrosine phosphatase σ (RPTPσ), which has been shown to markedly improve sensorimotor function, micturition, and coordinated locomotor behavior in spinal cord contused rats. However, the mechanism(s) underlying how modulation of RPTPσ mediates axon outgrowth through inhibitory CSPGs remain unclear. Here, we describe how intracellular sigma peptide modulation of RPTPσ induces enhanced protease Cathepsin B activity. Using DRG neurons from female Sprague Dawley rats cultured on an aggrecan/laminin spot assay and a combination of biochemical techniques, we provide evidence suggesting that modulation of RPTPσ regulates secretion of proteases that, in turn, relieves CSPG inhibition through its digestion to allow axon migration though proteoglycan barriers. Understanding the mechanisms underlying RPTPσ modulation elucidates how axon regeneration is impaired by proteoglycans but can then be facilitated following injury.SIGNIFICANCE STATEMENT Following spinal cord injury, chondroitin sulfate proteoglycans (CSPGs) upregulate and potently inhibit axon regeneration and functional recovery. Protein tyrosine phosphatase σ (RPTPσ) has been identified as a critical cognate receptor of CSPGs. We have previously characterized a synthetic peptide (intracellular sigma peptide) that targets the regulatory intracellular domain of the receptor to allow axons to regenerate despite the presence of CSPGs. Here, we have found that one important mechanism by which peptide modulation of the receptor enhances axon outgrowth is through secretion of a protease, Cathepsin B, which enables digestion of CSPGs. This work links protease secretion to the CSPG receptor RPTPσ for the first time with implications for understanding the molecular mechanisms underlying neural regeneration and plasticity.


Assuntos
Catepsina B/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Regeneração Nervosa/fisiologia , Crescimento Neuronal/fisiologia , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Animais , Células Cultivadas , Feminino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...